371
Views
15
CrossRef citations to date
0
Altmetric
Vibrational Spectroscopy

Microchip-Based Surface Enhanced Raman Spectroscopy for the Determination of Sodium Thiocyanate in Milk

, &
Pages 1930-1940 | Received 06 Oct 2014, Accepted 29 Dec 2014, Published online: 26 May 2015

REFERENCES

  • Abalde-Cela, S., B. Auguié, M. Fischlechner, W. T. S. Huck, R. A. Alvarez-Puebla, L. M. Liz-Marzán, and C. Abell. 2011. Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation. Soft Matter 7: 1321–25. doi:10.1039/c0sm00601g
  • Alvarez-Puebla, R. A., A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carbó-Argibay, N. Pazos-Pérez, et al. 2011. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proceedings of the National Academy of Sciences United States of America 108: 8157–61. doi:10.1073/pnas.1016530108
  • Alvarez-Puebla, R. A., and L. M. Liz-Marzán. 2012. SERS detection of small inorganic molecules and ions. Angewandte Chemie International Edition 51: 11214–223. doi:10.1002/anie.201204438
  • Banerjee, K. K., P. Marimuthu, P. Bhattacharyya, and M. Chatterjee. 1997. Effect of thiocyanate ingestion through milk on thyroid hormone homeostasis in women. British Journal of Nutrition 78: 679–81. doi:10.1079/BJN19970186
  • Cao, L., L. Cheng, Z. Zhang, Y. Wang, X. Zhang, H. Chen, B. Liu, S. Zhang, and J. Kong. 2012. Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip. Lab on a Chip 12: 4864–69. doi:10.1039/c2lc40564d
  • Cecchini, M. P., V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel. 2013. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nature Materials 12: 165–71. doi:10.1038/nmat3488
  • Chang, C., J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. VanâDorpe. 2009. Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering. Angewandte Chemie International Edition 48: 9932–35. doi:10.1002/anie.200905389
  • Chen, S., S. Wu, C. Liu, and J. Yin. 2009. Research on the optimum experimental conditions for trichloroacetic acid precipitation of liquid milk proteins. Journal of Dairy Science Technology 278–81.
  • Dasary, S. S. R., A. K. Singh, D. Senapati, H. Yu, and P. C. Ray. 2009. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. Journal of the American Chemical Society 131: 13806–812. doi:10.1021/ja905134d
  • Fang, X., H. Chen, X. Jiang, and J. Kong. 2011. Microfluidic devices constructed by a marker pen on a silica gel plate for multiplex assays. Analytical Chemistry 83: 3596–99. doi:10.1021/ac200024a
  • Fateixa, S., A. L. Daniel-da-Silva, H. I. S. Nogueira, and T. Trindade. 2014. Raman signal enhancement dependence on the gel strength of Ag/hydrogels used as SERS substrates. The Journal of Physical Chemistry C 118: 10384–392. doi:10.1021/jp500301q
  • Goto, M., K. Sato, A. Murakami, M. Tokeshi, and T. Kitamori. 2005. Development of a microchip-based bioassay system using cultured cells. Analytical Chemistry 77: 2125–31. doi:10.1021/ac040165g
  • Graham, D. 2010. The next generation of advanced spectroscopy: surface enhanced Raman scattering from metal nanoparticles. Angewandte Chemie International Edition 49: 9325–27. doi:10.1002/anie.201002838
  • Jia, Z.-J., Q. Fang, and Z.-L. Fang. 2004. Bonding of glass microfluidic chips at room temperatures. Analytical Chemistry 76: 5597–602. doi:10.1021/ac0494477
  • Kim, K., H. B. Lee, and K. S. Shin. 2008. Silanization of polyelectrolyte-coated particles: an effective route to stabilize Raman tagging molecules adsorbed on micrometer-sized silver particles. Langmuir 24: 5893–98. doi:10.1021/la800251t
  • Kinnan, M. K., and G. Chumanov. 2007. Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism. Journal of Physics Chemistry C 111: 18010–17. doi:10.1021/jp074002i
  • Kovarik, M. L., P. C. Gach, D. M. Ornoff, Y. Wang, J. Balowski, L. Farrag, and N. L. Allbritton. 2012. Micro total analysis systems for cell biology and biochemical assays. Analytical Chemistry 84: 516–40. doi:10.1021/ac202611x
  • Li, J. F., Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, et al. 2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464: 392–95. doi:10.1038/nature08907
  • Lin, X., W.-L.-J. Hasi, X.-T. Lou, S. Lin, F. Yang, B.-S. Jia, Y. Cui, D.-X. Ba, D.-Y. Lin, and Z.-W. Lu. 2014. Rapid and simple detection of sodium thiocyanate in milk using surface-enhanced Raman spectroscopy based on silver aggregates. Journal of Raman Spectroscopy 45: 162–67. doi:10.1002/jrs.4436
  • Liu, B., T. Wu, X. Yang, Z. Wang, and Y. Du. 2014. Portable microfluidic chip based surface-enhanced Raman spectroscopy sensor for crystal violet. Analytical Letters 47: 2682–90. doi:10.1080/00032719.2014.917425
  • Molinou, I. E., and N. G. Tsierkezos. 2008. Study of the interactions of sodium thiocyanate, potassium thiocyanate and ammonium thiocyanate in water + N,N-dimethylformamide mixtures by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 71: 954–58. doi:10.1016/j.saa.2008.02.035
  • Niemann, R. A., and D. L. Anderson. 2008. Determination of iodide and thiocyanate in powdered milk and infant formula by on-line enrichment ion chromatography with photodiode array detection. Journal of Chromatography A 1200: 193–97. doi:10.1016/j.chroma.2008.05.064
  • Osaki, T., Y. Suzuki, K. Hirokawa, and R. Shimada. 2011. Hydrogen bond formations between pyrazine and formic acid and between pyrazine and trichloroacetic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 83: 175–79. doi:10.1016/j.saa.2011.08.012
  • Panikkanvalappil, S. R., M. A. Mackey, and M. A. El-Sayed. 2013. Probing the unique dehydration-induced structural modifications in cancer cell DNA using surface enhanced Raman spectroscopy. Journal of the American Chemical Society 135: 4815–21. doi:10.1021/ja400187b
  • Peng, B., G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong. 2013. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7: 5993–6000. doi:10.1021/nn401685p
  • Pienpinijtham, P., X. X. Han, S. Ekgasit, and Y. Ozaki. 2011. Highly sensitive and selective determination of iodide and thiocyanate concentrations using surface-enhanced Raman scattering of starch-reduced gold nanoparticles. Analytical Chemistry 83: 3655–62. doi:10.1021/ac200743j
  • Qu, L.-L., D.-W. Li, J.-Q. Xue, W.-L. Zhai, J. S. Fossey, and Y.-T. Long. 2012. Batch fabrication of disposable screen printed SERS arrays. Lab on a Chip 12: 876–81. doi:10.1039/c2lc20926h
  • Rajapandiyan, P., and J. Yang. 2012. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. Analytical Chemistry 84: 10277–282. doi:10.1021/ac302175q
  • Rycenga, M., X. Xia, C. H. Moran, F. Zhou, D. Qin, Z.-Y. Li, and Y. Xia. 2011. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angewandte Chemie International Edition 50: 5473–77. doi:10.1002/anie.201101632
  • Saito, Y., J. J. Wang, D. A. Smith, and D. N. Batchelder. 2002. A simple chemical method for the preparation of silver surfaces for efficient SERS. Langmuir 18: 2959–61. doi:10.1021/la011554y
  • Schlücker, S. 2014. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angewandte Chemie International Edition 53: 4756–95. doi:10.1002/anie.201205748
  • Silva Júnior, J. J., M. A. Farias, V. L. Silva, M. C. B. S. M. Montenegro, A. N. Araújo, A. F. Lavorante, and A. P. S. Paim. 2010. Spectrophotometric determination of thiocyanate in human saliva employing micropumping multicommutation flow system. Spectroscopy Letters 43: 213–19. doi:10.1080/00387010903287094
  • Tanaka, Y., N. Naruishi, H. Fukuya, J. Sakata, K. Saito, and S. Wakida. 2004. Simultaneous determination of nitrite, nitrate, thiocyanate and uric acid in human saliva by capillary zone electrophoresis and its application to the study of daily variations. Journal of Chromatography A 1051: 193–97. doi:10.1016/j.chroma.2004.06.053
  • Toraño, J. S., and H. J. M. van Kan. 2003. Simultaneous determination of the tobacco smoke uptake parameters nicotine, cotinine and thiocyanate in urine, saliva and hair, using gas chromatography-mass spectrometry for characterisation of smoking status of recently exposed subjects. Analyst 128: 838–43. doi:10.1039/b304051h
  • Wang, J., H. Chen, P. Zhang, Z. Zhang, S. Zhang, and J. Kong. 2013. Probing trace Hg2+ in a microfluidic chip coupled with in situ near-infrared fluorescence detection. Talanta 114: 204–10. doi:10.1016/j.talanta.2013.03.079
  • Wang, L., H. Li, J. Tian, and X. Sun. 2010. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Applied Materials & Interfaces 2: 2987–91. doi:10.1021/am100968j
  • White, P., and J. Hjortkjaer. 2014. Preparation and characterisation of a stable silver colloid for SER(R)S spectroscopy. Journal of Raman Spectroscopy 45: 32–40. doi:10.1002/jrs.4412
  • Xu, L., W. Wang, Z. Zhang, P. Yang, H. Fan, and J. Kong. 2013. Microchip-based strategy for enrichment of acetylated proteins. Microchimica Acta 180: 613–18. doi:10.1007/s00604-013-0950-6
  • Yager, P., T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl. 2006. Microfluidic diagnostic technologies for global public health. Nature 442: 412–18. doi:10.1038/nature05064
  • Yap, Y. C., R. M. Guijt, T. C. Dickson, A. E. King, and M. C. Breadmore. 2013. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation. Analytical Chemistry 85: 10051–56. doi:10.1021/ac402631g
  • Yu, W. W., and I. M. White. 2013. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138: 1020–25. doi:10.1039/c2an36116g
  • Zhai, W.-L., D.-W. Li, L.-L. Qu, J. S. Fossey, and Y.-T. Long. 2012. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale 4: 137–42. doi:10.1039/c1nr10956a
  • Zheng, J., A. Jiao, R. Yang, H. Li, J. Li, M. Shi, C. Ma, Y. Jiang, L. Deng, and W. Tan. 2012. Fabricating a reversible and regenerable Raman-active substrate with a biomolecule-controlled DNA nanomachine. Journal of the American Chemical Society 134: 19957–60. doi:10.1021/ja308875r

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.