170
Views
5
CrossRef citations to date
0
Altmetric
ENVIRONMENTAL ANALYSIS

Characterization of the Concentrations of Volatile Organic Compounds in the Romanian Littoral using General Regression Neural Networks: A Case Study

&
Pages 387-399 | Received 31 Aug 2014, Accepted 02 Mar 2015, Published online: 15 Dec 2015

References

  • Alvarez-Hornos, F. J., C. Gabaldon, V. Martinez-Soria, M. Martin, P. Marzal, and J. M. Penya-roja. 2008. Biofiltration of ethylbenzene vapours: Influence of the packing material. Bioresource Technology 99: 269–76. doi:10.1016/j.biortech.2006.12.022
  • Appel, K. W., K. M. Foley, J. O. Bash, R. W. Pinder, R. L. Dennis, D. J. Allen, and K. Pickering. 2011. A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002–2006. Geoscientific Model Development 4(2): 357–71. doi:10.5194/gmd-4-357-2011
  • Barbes, L., A. Barbulescu, C. Rădulescu, C. Stihi, and E. D. Chelărescu. 2014. Determination of heavy metals in leaves and bark of Populus nigra L by atomic absorption spectrometry. Romanian Reports in Physics 66(3): 877–86.
  • Barbes, L., C. Neagu, L. Melnic, C. Ilie, and M. Velicu. 2009. The use of artificial neural network (ANN) for prevision of some airborne pollutants concentration in urban areas. Rev. Chim. (Bucuresti). 60(3): 301–07. Available at http://www.revistadechimie.ro/pdf/BARBES%20L...pdf
  • Barbulescu, A., and L. Barbes. 2013. Mathematical models for inorganic pollutants in Navodari area, Romania. Rev. Chim. (Bucuresti). 64(7): 747–53. Available at http://www.revistadechimie.ro/pdf/BARBULESCU%20A.pdf%207%2013.pdf
  • Barbulescu, A., and L. Barbes. 2014. Models for pollutants’ correlation in the Romanian littoral. Romanian Reports in Physics 66(4): 1189–99.
  • Barbulescu, A., and J. Deguenon. 2014a. Change point detection and models for precipitation evolution. Case study. Romanian Journal of Physics 59(5–6): 590–600.
  • Barbulescu, A., and J. Deguenon. 2014b. Models for trend of precipitation in Dobrudja. Environmental Engineering and Management Journal 13(4): 873–80.
  • Barnett, V., and T. Lewis. 1994. Outliers in statistical data, 3rd ed., 608. New York, NY: Wiley.
  • Berenjian, A., N. Chan, and H. J. Malmiri. 2012. Volatile organic compounds removal methods: A review. American Journal of Biochemistry and Biotechnology 8(4): 220–29. doi:10.3844/ajbbsp.2012.220.229
  • Bereznicki, S. D., J. R. Sobus, A. F. Vette, M. A. Stiegel, and R. W. Williams. 2012. Assessing spatial and temporal variability of VOCs and PM-components in outdoor air during the Detroit Exposure and Aerosol Research Study (DEARS). Atmospheric Environment 61: 159–68. doi:10.1016/j.atmosenv.2012.07.008
  • Carruthers, D., X. Sheng, and E. Vanvyve. 2008. Regulatory requirements for dispersion modelling in Taiwan including the use of ADMS. 12th International Conference on Harmonisation, Cavtat, Croatia, October 2008: 152–56. Available at http://www.harmo.org/Conferences/Proceedings/_Cavtat/publishedSections/O_S3-02.pdf
  • Chatfield, C. 2001. Time - series forecasting. Boca Raton, FL: Chapman & Hall/CRC.
  • De Nevers, N. 2000. Air pollution control engineering, 2nd ed. Boston, MA: McGraw-Hill.
  • European Environment Agency. 2013. Exceedance of air quality limit values in urban areas (Indicator CSI 004).
  • European Parliament and Council. 2004. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air, OJL 23, 26.1.2005, pp. 3–16.
  • European Parliament and Council. 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, OJL 11.6.2008.
  • Grasic, B., P. Mlakar, and M. Z. Boznar. 2006. Ozone prediction based on neural networks and Gaussian processes. Il Nuovo Cimento C 29(6): 651–62. doi: 10.1393/ncc/i2006-10011-5
  • Hellen, H., S. Hakola, H. Haaparanta, H. Pietarila, and M. Kauhaniemi. 2008. Influence of residential wood combustion on local air quality. The Science of the Total Environment 393: 283–90. doi:10.1016/j.scitotenv.2008.01.019
  • Hrdlickova, Z., J. Michalek, M. Kolar, and V. Vesely. 2008. Identification of factors affecting air pollution by dust aerosol PM10 in Brno City, Czech Republic. Atmospheric Environment 42: 8661–73. doi:10.1016/j.atmosenv.2008.08.017
  • Huang, B., C. Lei, C. Wei, and G. Zeng. 2014. Chlorinated volatile organic compounds (Cl-VOCs) in environment – Sources, potential human health impacts, and current remediation technologies. Environment International 71: 118–38. doi:10.1016/j.envint.2014.06.013
  • Kabir, E., and K.-H. Kim. 2010. An on-line analysis of 7 odorous volatile organic compounds in the ambient air surrounding a large industrial complex. Atmospheric Environment 44: 3492–502. doi:10.1016/j.atmosenv.2010.06.021
  • Kalabokas, P. D., J. Hatzianestis, J. G. Bartzis, and P. Papagiannakopoulos. 2001. Atmospheric concentrations of saturated and aromatic hydrocarbons around a Greek oil refinery. Atmospheric Environment 35: 2545–55. doi:10.1016/S1352-2310(00)00423-4
  • Karppinen, A., J. Kukkonen, T. Elolähde, M. Konttinen, T. Koskentalo, and E. Rantakrans. 2000. A modelling system for predicting urban air pollution: Model description and applications in the Helsinki metropolitan area. Atmospheric Environment 34(22): 3723–33. doi:10.1016/S1352-2310(00)00074-1
  • Leuchner, M., and B. Rappengluck. 2010. VOC source–receptor relationship in Houston during TexAQS-II. Atmospheric Environment 44(33): 4056–67. doi:10.1016/j.atmosenv.2009.02.029
  • Levene, H. 1960. Robust test for equality of variances. In Contributions to probability and statistics: Essays in honor of Harold Hotelling, ed. I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, H. B. Mann, 278–92. Stanford, CT: Stanford University Press.
  • Li, Y., J. Wang, Z. Chen, and X. Zhou. 2001. Artificial neural network for the quantitative analysis of air toxic VOCs. Analytical Letters 34(12): 2203–19. doi:10.1081/AL-100106851
  • Lin, Y., and W. G. Cobourn. 2007. Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions. Atmospheric Environment 41: 3502–13. doi:10.1016/j.atmosenv.2006.11.060
  • MacIntosh, D. L., J. H. Stewart, T. A. Myatt, J. E. Sabato, G. C. Flowers, K. W. Brown, D. J. Hlinka, and D. A. Sullivan. 2010. Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmospheric Environment 44(2): 262–70. doi:10.1016/j.atmosenv.2009.09.023
  • Matthias, V. 2008. The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model: Comparison to near surface in situ and sunphotometer measurements. Atmospheric Chemistry and Physics Discussions 8: 1457–503. doi:10.5194/acpd-8-1457-2008
  • Nebot, A., V. Mugica, and A. Escobet. 2008. Ozone prediction based on meteorological variables: A fuzzy inductive reasoning approach. Atmospheric Chemistry and Physics Discussions 8: 12343–70. doi:10.5194/acpd-8-12343-2008
  • Olesen, H. R., R. Berkowicz, and P. Lofstrom. 2007. OML: Review of model formulation. Technical Report 609. National Environmental Research Institute, Denmark.
  • Owen, B., H. A. Edmunds, D. J. Carruthers, and R. J. Singles. 2000. Prediction of total oxides of nitrogen and nitrogen dioxide concentrations in a large urban area using a new generation urban scale dispersion model with integral chemistry model. Atmospheric Environment 34(3): 397–406. doi:10.1016/S1352-2310(99)00332-5
  • Paatero, P. 2000. User’s guide for positive matrix factorization programs PMF2 and matter across Spain in the CALIOPE modeling system. Atmospheric Environment 46: 376–96.
  • Pandya, G. H., A. G. Gavane, A. D. Bhanarkar, and V. K. Kondawar. 2006. Concentrations of volatile organic compounds (VOCs) at an oil refinery. The International Journal of Environmental Studies 63(3): 337–51. doi:10.1080/00207230500241918
  • Pay, M. T., M. Piot, O. Jorba, S. Gassó, M. Gonçalves, S. Basart, D. Dabdub, P. Jiménez-Guerrero, and J. M. Baldasano. 2010. A full year evaluation of the CALIOPE-EU air quality modeling system over Europe for 2004. Atmospheric Environment 44(27): 3322–42. doi:10.1016/j.atmosenv.2010.05.040
  • Petelin, D., A. Grancharova, and J. Kocijan. 2013. Evolving Gaussian process models for prediction of ozone concentration in the air. Simulation Modelling Practice and Theory 33: 68–80. doi:10.1016/j.simpat.2012.04.005
  • Rappaport, S. M., and L. L. Kupper. 2004. Variability of environmental exposures to volatile organic compounds. Journal of Exposure Analysis and Environmental Epidemiology 14(1): 92–107. doi:10.1038/sj.jea.7500309
  • Rexeis, M., and S. Hausberger. 2009. Trend of vehicle emission levels until 2020—Prognosis based on current vehicle measurements and future emission legislation. Atmospheric Environment 43: 4689–98. doi:10.1016/j.atmosenv.2008.09.034
  • Romanian Parliament. 2011. http://mmediu.ro/file/2011-12-29_legislatie_calitate_aer_legea104din2011calitate%20aer.pdf (accessed July 27, 2014) (in Romanian).
  • Shewchuk, J. R. 1994. http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (accessed July 27, 2014).
  • Sprecht, D. F. 1991. A general regression neural network. IEEE Transactions on Neural Networks 2(6): 568–76. doi:10.1109/72.97934
  • Terasvirta, T., D. van Dijk, and M. C. Medeiros. 2005. Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination. International Journal of Forecasting 21(4): 755–74. doi:10.1016/j.ijforecast.2005.04.010
  • U. S. Environmental Protection Agency. 1999. EPA/625/R-96/010b, Compendium for the determination of toxic organic compounds in ambient air, 2nd edition, Center for Environmental Research Information Office of research and Development, U.S.
  • Wei, W., S. Cheng, G. Li, G. Wang, and H. Wang. 2014. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmospheric Environment 89: 358–66. doi:10.1016/j.atmosenv.2014.01.038
  • World Health Organization. 2005. http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/ (accessed July 27, 2014).
  • Zhang, G. P. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159–75. doi:10.1016/S0925-2312(01)00702-0
  • Zou, B., F. B. Zhan, J. G. Wilson, and Y. Zeng. 2010. Performance of AERMOD at different time scales. Simulation Modelling Practice anland Theory 18(5): 612–23. doi:10.1016/j.simpat.2010.01.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.