166
Views
1
CrossRef citations to date
0
Altmetric
Electrochemistry

Determination of Reduced Nicotinamide Adenine Dinucleotide with a Protamine Multiwalled Carbon Nanotube Electrode

, , , , , & show all
Pages 258-268 | Received 22 Jan 2015, Accepted 20 Jun 2015, Published online: 03 Nov 2015

References

  • Aydoğdu, G., D. K. Zeybek, B. Zeybek, and Ş. Pekyardimci. 2013. Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. Journal of Applied Electrochemistry 43: 523–31. doi:10.1007/s10800-013-0536-3
  • Bergel, A., J. Souppe, and M. Comtat. 1989. Enzymatic applification for spectrophotometric and electrochemical assays of NAD+ and NADH. Analytical Biochemistry 179: 382–88. doi:10.1016/0003-2697(89)90149-8.
  • Cao, M., X. Deng, S. Su, F. Zhang, X. Xiao, Q. Hu, Y. Fu, B. Yang, Y. Wu, W. Sheng, and Y. Zeng. 2013. Protamine sulfate-nanodiamond hybrid nanoparticles as a vector for MiR-203 restoration in esophageal carcinoma cells. Nanoscale 5: 12120–25. doi:10.1039/c3nr04056a
  • Deng, L., Y. Wang, L. Shang, D. Wen, F. Wang, and S. Dong. 2008. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer. Biosensors and Bioelectronics 24: 951–57. doi:10.1016/j.bios.2008.07.066
  • Deore, B. A., and M. S. Freund. 2005. Reactivity of Poly(anilineboronic acid) with NAD+ and NADH. Chemistry of Materials 17: 2918–23. doi:10.1021/cm050647o
  • Ding, J., Y. Chen, X. Wang, and W. Qin. 2012. Label-free and substrate-free potentiometric aptasensing using polycation-sensitive membrane electrodes. Analytical Chemistry 84: 2055–61. doi:10.1021/ac2024975
  • Filip, J., J. Šefčovičá, P. Tomčík, P. Gemeiner, and J. Tkac. 2011. A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta 84: 355–61. doi:10.1016/j.talanta.2011.01.004
  • Fotouhi, L., F. Raei, M. M. Heravi, and D. Nematollahi. 2010. Electrocatalytic activity of 6,7-dihydroxy-3-methyl-9-thia-4,4ª-diazafluoren-2-one/multi-wall carbon nanotubes immobilized on carbon paste electrode for NADH oxidation: Application to the trace determination of NADH. Journal of Electroanalytical Chemistry 639: 15–20. doi:10.1016/j.jelechem.2009.10.013
  • Fukushima, T., J. Ohno, R. Imayoshi, N. Mori, R. Sakagami, M. Mitarai, and T. Hayakawa. 2011. DNA/protamine complex paste for an injectable dental material. Journal of Materials Science: Materials in Medicine 22: 2607–15. doi:10.1007/s10856-011-4446-9
  • Gao, W., Y. Chen, J. Xi, S. Lin, Y. Chen, Y. Lin, and Z. Chen. 2013. A novel electrochemiluminescence ethanol biosensor based on tris(2,2′-bipyridine) ruthenium (II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film. Biosensors and Bioelectronics 41: 776–82. doi:10.1016/j.bios.2012.10.005
  • Ge, B., Y. Tan, Q. Xie, M. Ma, and S. Yao. 2009. Preparation of chitosan-dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH. Sensors and Actuators B: Chemical 137: 547–54. doi:10.1016/j.snb.2009.01.030
  • Goran, J. M., C. A. Favela, and K. J. Stevenson. 2013. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes. Analytical Chemistry 85: 9135–41. doi:10.1021/ac401784b
  • Hua, E., L. Wang, X. Jing, C. Chen, and G. Xie. 2013. One-step fabrication of integrated disposable biosensor based on ADH/NAD+/meldola’s blue/graphitized mesoporous carbons/chitosan nanobiocomposite for ethanol detection. Talanta 111: 163–69. doi:10.1016/j.talanta.2013.02.064
  • Li, L., H. Lu, and L. Deng. 2013. A sensitive NADH and ethanol biosensor based on graphene-Au nanorods nanocomposites. Talanta 113: 1–6. doi:10.1016/j.talanta.2013.03.074
  • Li, Y.-W., Y. Chen, Y.-H. Ma, J.-G. Shi, Y.-X. Wang, C.-H. Qi, and Q.-S. Li. 2014. Recent advances in the dehydrogenase biosensors based on carbon nanotube modified electrodes. Chinese Journal of Analytical Chemistry 5: 759–65. doi:10.1016/s1872-2040(13)60733-1
  • Li, Z., Y. Huang, L. Chen, X. Qin, Z. Huang, Y. Zhou, M. Yue, J. Li, S. Huang, Y. Liu, W. Wang, Q. Xie, and S. Yao. 2013. Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film. Sensors and Actuators B: Chemical 181: 280–87. doi:10.1016/j.snb.2013.01.072
  • Liu, J., S. Guo, Z. Li, L. Liu, and J. Gu. 2009. Synthesis and characterization of stearyl protamine and investigation of their complexes with DNA for gene delivery. Colloids and Surfaces B: Biointerfaces 73: 36–41. doi:10.1016/j.colsurfb.2009.04.026
  • Manso, J., M. L. Mena, P. Yáñez-Sedeño, and J. M. Pingarrón. 2008. Alcohol dehydrogenase amperometric biosensor based on a colloidal gold-carbon nanotubes composite electrode. Electrochimica Acta 53: 4007–12. doi:10.1016/j.electacta.2007.10.003
  • Mundaca, R. A., M. Moreno-Guzmάn, M. Eguílan, P. Yáñez-Sedeño, and J. M. Pingarrón. 2012. Enzyme biosensor for androsterone based on 3α-hydroxysteroid dehydrogenase immobilized onto a carbon nanotubes/ionic liquid/NAD+ composite electrode. Talanta 99: 697–02. doi:10.1016/j.talanta.2012.07.008
  • Nasri, Z., E. Shams, and M. Ahmadi. 2013. Direct modification of a glassy carbon electrode with toluidine blue diazonium salt: Application to NADH determination and biosensing of ethanol. Electroanalysis 25: 1917–25. doi:10.1002/elan.201300062
  • Pan, D., Y. Wang, Z. Chen, T. Yin, and W. Qin. 2009. Fabrication and characterization of carbon nanotube-hydroxyapatite nanocomposite: Application to anodic stripping voltammetric determination of cadmium. Electroanalysis 21: 944–52. doi:10.1002/elan.200804492
  • Rotariu, L., O.-M. Istrate, and C. Bala. 2014. Poly(allylamine hydrochloride) modified screen-printed carbon electrode for sensitive and selective detecton of NADH. Sensors and Actuators B: Chemical 191: 491–97. doi:10.1016/j.snb.2013.09.077
  • Ruiz-Hitzky, E., M. Darder, P. Aranda, and K. Ariga. 2010. Advances in biomimetic and nanostructured biohybrid materials. Advanced Materials 22: 323–36. doi:10.1002/adma.200901134
  • Shalini, J., K. J. Sankaran, H.-C. Chen, C.-Y. Lee, N.-H. Tai, and I.-N. Lin. 2014. Mediatorless N2 incorporated diamond nanowire electrode for selective detection of NADH at stable low oxidation potential. Analyst 139: 778–85. doi:10.1039/c3an01246h
  • Sharifi, E., A. Salimi, and E. Shams. 2013. Electrocatalytic activity of nickel oxide nanoparticles as mediatorless system for NADH and ethanol sensing at physiological pH solution. Biosensors and Bioelectronics 45: 260–66. doi:10.1016/j.bios.2013.01.055
  • Teymourian, H., A. Salimi, and S. Khezrian. 2013. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioelectrochemical sensing platform. Biosensors and Bioelectronics 49: 1–8. doi:10.1016/j.bios.2013.04.034
  • Tiwari, I., and M. Gupta. 2014. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH. Materials Research Bulletin 49: 94–101. doi:10.1016/j.materresbull.2013.08.013
  • Wang, J., L. Angnes, and T. Martine. 1992. Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes. Bioelectrochemistry and Bioenergetics 29: 215–21. doi:10.1016/0302-4598(92)80069-s
  • Yassin, A. A., A. M. Elwaseef, M. M. Elnashar, J. Oldenburg, G. Mayer, B. Pötzsch, and J. Müller. 2014. Protamine-adsorbed magnetic nanoparticles for efficient isolation and concentration of hepatitis-C virus from human plasma samples. Chemical Communications 50: 590–92. doi:10.1039/c3cc46793 g
  • Zhang, Y. F., X. J. Bo, A. Nsabimana, C. Luhana, G. Wang, H. Wang, M. Li, and L. Guo. 2014. Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. Biosensors and Bioelectronics 53: 250–56. doi:10.1016/j.bios.2013.10.001
  • Zhou, H., Z. Zhang, P. Yu, L. Su, T. Ohsaka, and L. Mao. 2010. Noncovalent attachment of NAD+ cofactor carbon nanotubes for preparation of intergrated dehydrogenase-based electrochemical biosensors. Langmuir 26: 6028–32. doi:10.1021/la903799n

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.