1,060
Views
24
CrossRef citations to date
0
Altmetric
NANOTECHNOLOGY

Capacitive Deionization for Desalination Using Nanostructured Electrodes

&
Pages 1641-1655 | Received 08 Sep 2015, Accepted 05 Nov 2015, Published online: 08 Jun 2016

References

  • Ajayan, P. M. 1999. Nanotubes from carbon. Chemical Reviews 99 (7):1787–800.
  • AlMarzooqi, F. A., A. A. AlGhaferi, I. Saadat, and N. Hilal. 2014. Application of capacitive deionisation in water desalination: A review. Desalination 342:3–15. doi:10.1016/j.desal.2014.02.031
  • Anderson, M. A., A. L. Cudero, and J. Palma. 2010. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 55:3845–56. doi:10.1016/j.electacta.2010.02.012
  • Biesheuvel, P. M., S. Porada, and V. Presser. 2013. Comment on “Carbon nanotube/graphene composite for enhanced capacitive deionization performance” by Y. Wimalasiri and L. Zou. Carbon 63:574–75. doi:10.1016/j.carbon.2013.06.088
  • Dai, K., L. Shi, J. Fang, D. Zhang, and B. Yu. 2005. NaCl adsorption in multi-walled carbon nanotubes. Materials Letters 59:1989–92. doi:10.1016/j.matlet.2005.01.042
  • El-Deen, A. G., N. A. M. Barakat, and H. Y. Kim. 2014. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344:289–98. doi:10.1016/j.desal.2014.03.028
  • El-Deen, A. G., N. A. M. Barakat, K. A. Khalil, M. Motlak, and H. Yong Kim. 2014. Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceramics International 40:14627–34. doi:10.1016/j.ceramint.2014.06.049
  • El-Deen, A. G., J.-H. Choi, C. S. Kim, K. A. Khalil, A. A. Almajid, and N. A. M. Barakat. 2015. TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 361:53–64. doi:10.1016/j.desal.2015.01.033
  • Elimelech, M., and W. A. Phillip. 2011. The future of seawater desalination: Energy, technology, and the environment. Science 333:712–17. doi:10.1126/science.1200488
  • Feng, C. J., C. Hou, S. H. Chen, and C. P. Yu. 2013. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere 91 (5):623–28. doi:10.1016/j.chemosphere.2012.12.068
  • Gao, Y., L. Pan, H. Li, Y. Zhang, Z. Zhang, and Y. Chen. 2009. Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films 517: 1616–19. doi:10.1016/j.tsf.2008.09.065
  • Grujicic, M., G. Cao, and B. Gersten. 2002. Optimization of the chemical vapor deposition process for carbon nanotubes fabrication. Applied Surface Science 199:90–106. doi:10.1016/s0169–4332(02)00892–9
  • Gu, X., M. Hu, Z. Du, J. Huang, and C. Wang. 2015. Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization. Electrochimica Acta 182:183–91. doi:10.1016/j.electacta.2015.09.076
  • Gu, X., Y. Yang, Y. Hu, M. Hu, J. Huang, and C. Wang. 2015. Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization. Journal of Materials Chemistry A 3:5866–74. doi:10.1039/c4ta06646d
  • Han, L., K. G. Karthikeyan, M. A. Anderson, J. J. Wouters, and K. B. Gregory. 2013. Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization. Electrochimica Acta 90:573–81. doi:10.1016/j.electacta.2012.11.069
  • Hou, C. H., C. Liang, S. Yiacoumi, S. Dai, and C. Tsouris. 2006. Electrosorption capacitance of nanostructured carbon-based materials. Journal of Colloid and Interface Science 302:54–61. doi:10.1016/j.jcis.2006.06.009
  • Jia, B., and L. Zou. 2012a. Graphene nanosheets reduced by a multi-step process as high performance electrode material for capacitive deionization. Carbon 50:2315–21. doi:10.1016/j.carbon.2012.01.051
  • Jia, B., and L. Zou. 2012b. Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization. Chemical Physics Letters 548:23–28. doi:10.1016/j.cplett.2012.06.016
  • Jung, S. M., J. H. Choi, and J. H. Kim. 2012. Application of capacitive deionization (CDI) technology to insulin purification process. Separation and Purification Technology 98:31–35. doi:10.1016/j.seppur.2012.06.005
  • Kim, C., J. Lee, S. Kim, and J. Yoon. 2014. TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization. Desalination 342:70–74. doi:10.1016/j.desal.2013.07.016
  • Lalia, B. S., V. Kochkodan, R. Hashaikeh, and N. Hilal. 2013. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326:77–95. doi:10.1016/j.desal.2013.06.016
  • Laxman, K., M. T. Z. Myint, M. Al Abri, P. Sathe, S. Dobretsov, and J. Dutta. 2015. Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination 362:126–32. doi:10.1016/j.desal.2015.02.010
  • Laxman, K., M. T. Z. Myint, R. Khan, T. Pervez, and J. Dutta. 2015. Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water. Desalination 359:64–70. doi:10.1016/j.desal.2014.12.029
  • Lee, J. H., W. S. Bae, and J. H. Choi. 2010. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination 258:159–63. doi:10.1016/j.desal.2010.03.020
  • Lee, J. H., and J. H. Choi. 2013. Ion-selective composite carbon electrode coated with TiO2 nanoparticles for the application of electrosorption process. Desalination and Water Treatment 51:503–10. doi:10.1080/19443994.2012.714581
  • Li, H., L. Pan, T. Lu, Y. Zhan, C. Nie, and Z. Sun. 2011. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry 653:40–44. doi:10.1016/j.jelechem.2011.01.012
  • Li, H., L. Pan, C. Nie, Y. Liu, and Z. Sun. 2012. Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry 22:15556–61. doi:10.1039/c2jm32207b
  • Li, H., L. Zou, L. Pan, and Z. Sun. 2010. Novel graphene-like electrodes for capacitive deionization. Environmental Science & Technology 44:8692–97. doi:10.1021/es101888j
  • Li, H. B., T. Lu, L. K. Pan, Y. P. Zhang, and Z. Sun. 2009. Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry 19:6773–79. doi:10.1039/b907703k
  • Li, Y. H., J. Ding, Z. K. Luan, Z. C. Di, Y. F. Zhu, C. L. Xu, D. H. Wu, and B. Q. Wei. 2003. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41 (14):2787–92. doi:10.1016/s0008-6223(03)00392-0
  • Li, Z., B. Song, Z. Wu, Z. Lin, Y. Yao, K.-S. Moon, and C. P. Wong. 2015. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy 11:711–18. doi:10.1016/j.nanoen.2014.11.018
  • Liu, J., M. Lu, J. Yang, J. Cheng, and W. Cai. 2015. Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis. Electrochimica Acta 151:312–18. doi:10.1016/j.electacta.2014.11.023
  • Liu, L., L. Liao, Q. Meng, and B. Cao. 2015. High performance graphene composite microsphere electrodes for capacitive deionization. Carbon 90:75–84. doi:10.1016/j.carbon.2015.04.009
  • Liu, Y., L. Pan, T. Chen, X. Xu, T. Lu, Z. Sun, and D. H. C. Chua. 2015. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochimica Acta 151:489–96. doi:10.1016/j.electacta.2014.11.086
  • Liu, Y., X. Xu, M. Wang, T. Lu, Z. Sun, and L. Pan. 2015a. Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. Journal of Materials Chemistry A 3:17304–11. doi:10.1039/c5ta03663a
  • Liu, Y., X. Xu, M. Wang, T. Lu, Z. Sun, and L. Pan. 2015b. Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chemical Communication 51:12020–23. doi:10.1039/c5cc03999a
  • Lu, C. S., H. Chiu, and C. T. Liu. 2006. Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial & Engineering Chemistry Research 45 (8):2850–55. doi:10.1021/ie051206 h
  • Mauter, M. S., and M. Elimelech. 2008. Environmental applications of carbon-based nanomaterials. Environmental Science & Technology 42 (16):5843–59. doi:10.1021/es8006904
  • Mauter, M. S., Y. Wang, K. C. Okemgbo, C. O. Osuji, E. P. Giannelis, and M. Elimelech. 2011. Antifouling ultra filtration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces 3 (8):2861–68. doi:10.1021/am200522v
  • Mezher, T, H. Fath, Z. Abbas, and A. Khaled. 2011. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266:263–73. doi:10.1016/j.desal.2010.08.035
  • Murthy, Z. V. P., and M. S. Gaikwad. 2013. Preparation of chitosan-multiwalled carbon nanotubes blended membranes: Characterization and performance in the separation of sodium and magnesium ions. Nanoscale and Microscale Thermophysical Engineering 17:245–62. doi:10.1080/15567265.2013.787571
  • Myint, M. T. Z., and J. Dutta. 2012. Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination 305:24–30. doi:10.1016/j.desal.2012.08.010
  • Nadakatti, S., M. Tendulkar, and M. Kadam. 2011. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination 268 (1–3):182–88. doi:10.1016/j.desal.2010.10.020
  • Oren, Y. 2008. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 228:10–29. doi:10.1016/j.desal.2007.08.005
  • Pan, B., and B. S. Xing. 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology 42 (24):9005–13. doi:10.1021/es801777n
  • Pan, H., J. Yang, S. Wang, Z. Xiong, W. Cai, and J. Liu. 2015. Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization. Journal of Materials Chemistry A 3:13827–34. doi:10.1039/c5ta02954f
  • Peng, Z., D. Zhang, L. Shi, and T. Yan. 2012. High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. Journal of Materials Chemistry 22: 6603–12. doi:10.1039/c2jm16735b
  • Porada, S., R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel. 2013. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 58: 1388–442. doi:10.1016/j. pmatsci.2013.03.005
  • Qadir, M., B. R. Sharma, A. Bruggeman, R. Choukr-Allah, and F. Karajeh. 2007. Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management 87:2–22. doi:10.1016/j.agwat.2006.03.018
  • Ramakrishna, S., K. Fujihara, W. E. Teo, T. Yong, Z. W. Ma, and R. Ramaseshan. 2006. Electrospun nanofibers: Solving global issues. Materials Today 9 (3):40–50. doi:10.1016/s1369-7021(06)71389-x
  • Ryoo, M. W., and G. Seo. 2003. Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Research 37:1527–34. doi:10.1016/s0043-1354(02)00531-6
  • Seo, S. J., H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon. 2010. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research 44 (7):2267–75. doi:10.1016/j.watres.2009.10.020
  • Si, Y, and E. T. Samulski. 2008. Synthesis of water soluble graphene. Nano Letters 8:1679–82. doi:10.1021/nl080604 h
  • Theron, J., T. E. Cloete, and M. de Kwaadsteniet. 2010. Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Critical Reviews in Microbiology 36 (4):318–39. doi:10.3109/1040841x.2010.489892
  • Vikesland, P. J., and K. R. Wigginton. 2010. Nanomaterial enabled biosensors for pathogen monitoring—A review. Environmental Science & Technology 44 (10):3656–69. doi:10.1021/es903704z
  • Wang, G., C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, and J. Qiu. 2012. Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta 69:65–70. doi:10.1016/j.electacta.2012.02.066
  • Wang, H., D. Zhang, T. Yan, X. Wen, J. Zhang, L. Shi, and Q. Zhong. 2013. Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A 1:11778–89. doi:10.1039/c3ta11926b
  • Wang, X. Z., M. G. Li, Y. W. Chen, R. M. Cheng, S. M. Huang, L. K. Pan, and Z. Sun. 2006. Electrosorption of NaCl solutions with carbon nanotubes and nanofibers composite film electrodes. Electrochemical and Solid-State Letters 9:E23–26. doi:10.1149/1.2213354
  • Wang, Z., B. Dou, L. Zheng, G. Zhang, Z. Liu, and Z. Hao. 2012. Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination 299:96–102. doi:10.1016/j.desal.2012.05.028
  • Welgemoed, T. J., and C. F. Schutte. 2005. Capacitive deionization technology™: An alternative desalination solution. Desalination 183 (1–3):327–40. doi:10.1016/j.desal.2005.02.054
  • Wen, X., D. Zhang, T. Yan, J. Zhang, and L. Shi. 2013. Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. Journal of Materials Chemistry A 1:12334–44. doi:10.1039/c3ta12683 h
  • Wimalasiri, Y., M. Mossad, and L. Zou. 2015. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination 357:178–88. doi:10.1016/j.desal.2014.11.015
  • Wimalasiri, Y., and L. Zou. 2013. Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–71. doi:10.1016/j.carbon.2013.03.040
  • Wouters, J. J., J. J. Lado, M. I. Tejedor-Tejedor, R. Perez-Roa, and M. A. Anderson. 2013. Carbon fiber sheets coated with thin-films of SiO2 and γ-Al2O3 as electrodes in capacitive deionization: Relationship between properties of the oxide films and electrode performance. Electrochimica Acta 112:763–73. doi:10.1016/j.electacta.2013.08.170
  • Xu, X., Y. Liu, T. Lu, Z. Sun, D. H. C. Chua, and L. Pan. 2015. Rational design and fabrication of graphene/ carbon nanotubes hybrid sponge for high-performance capacitive deionization. Journal of Materials Chemistry A 3:13418–25. doi:10.1039/c5ta01889 g
  • Xu, X., L. Pan, Y. Liu, T. Lu, and Z. Sun. 2015. Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of Colloid and Interface Science 445:143–50. doi:10.1016/j.jcis.2015.01.003
  • Xu, X., L. Pan, Y. Liu, T. Lu, Z. Sun, and D. H. C. Chua. 2015. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports 5:8458. doi:10.1038/srep08458
  • Xu, X., Z. Sun, D. H. C. Chua, and L. Pan. 2015. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Scientific Reports 5:11225. doi:10.1038/srep11225
  • Yang, J, L. Zou, H. Song, and Z. Hao. 2011. Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination 276:199–206. doi:10.1016/j.desal.2011.03.044
  • Yang, J., L. Zou, and H. Song. 2012. Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionization. Desalination 286:108–14. doi:10.1016/j.desal.2011.11.013
  • Yang, Z. Y., L. J. Jin, G. Q. Lu, Q. Q. Xiao, Y. X. Zhang, L. Jing, X. X. Zhan, Y. M. Yan, and K. N. Sun. 2014. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Advanced Functional Materials 24 (25):3917–25. doi:10.1002/adfm.201304091
  • Yin, H., S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao, and Z. Tang. 2013. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Advanced Materials 25:6270–76. doi:10.1002/adma.201302223
  • Yuan, L., X. Yang, P. Liang, L. Wang, Z. H. Huang, J. Wei, and X. Huang. 2012. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource Technology 110:735–38. doi:10.1016/j.biortech.2012.01.137
  • Zhang, D., T. Yan, L. Shi, Z. Peng, X. Wen, and J. Zhang. 2012. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry 22:14696–704. doi:10.1039/c2jm31393f
  • Zhou, P., G. M. Brown, and B. Gu. 2006. Membrane and other treatment technologies –pros and cons. In Perchlorate, eds. B. Gu, and J. Coates 389–404. New York: Springer.
  • Zodrow, K., L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. L. Li, and P. J. J. Alvarez. 2009. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research 43 (3):715–23. doi:10.1016/j.watres.2008.11.014
  • Zou, L., L. X. Li, H. H. Song, and G Morris. 2008. Using mesoporous carbon electrodes for brackish water desalination. Water Research 42:2340–48. doi:10.1016/j.watres.2007.12.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.