151
Views
4
CrossRef citations to date
0
Altmetric
PRECONCENTRATION TECHNIQUES

Adjustable Methacrylate Porous Monolith Polymer Layer Open Tubular Silica Capillary Microextraction for the Determination of Polycyclic Aromatic Hydrocarbons

, &
Pages 1824-1834 | Received 29 Jun 2015, Accepted 05 Dec 2015, Published online: 07 Jul 2016

References

  • Arthur, C. L., and J. Pawliszyn. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 62:2145–48. doi:10.1021/ac00218a019
  • Boven, G. M., L. C. M. Oosterling, G. Challa, and A. J. Schouten. 1990. Grafting kinetics of poly(methyl methacrylate) on microparticulate silica. Polymer 31:2377–83. doi:10.1016/0032-3861(90)90327-U
  • Chienthavorn, O., N. Ramnut, P. Subprasert, A. Sasook, and W. Insuan. 2014. Effective and reusable monolith capillary trap of nitrosamine extraction by superheated water from frankfurter sausage. Journal of Agricultural and Food Chemistry 62:1240–46. doi:10.1021/jf4036645
  • Collins, D. A., E. P. Nesterenko, D. Brabazon, and B. Paull. 2012. Controlled ultraviolet (UV) photoinitiated fabrication of monolithic porous layer open tubular (monoPLOT) capillary columns for chromatographic applications. Analytical Chemistry 84:3465–72. doi:10.1021/ac203432p
  • Collins, D. A., E. P. Nesterenko, and B. Paull. 2014. Infrared photo-initiated fabrication of monolithic porous layer open tubular (monoPLOT) capillary columns for chromatographic applications. RSC Advances 4:28165–70. doi:10.1039/c4ra03792h
  • Deverell, J. A., T. Rodemann, J. A. Smith, A. J. Canty, and R. M. Guijt. 2011. UV initiated formation of polymer monoliths in glass and polymer microreactors. Sensors and Actuators B: Chemical 155:388–96. doi:10.1016/j.snb.2010.11.020
  • Dias, A. N., V. Simao, J. Merib, and E. Carasek. 2013. Cork as a new (green) coating for solid-phase microextraction: Determination of polycyclic aromatic hydrocarbons in water samples by has chromatography-mass spectrometry. Analytica Chimica Acta 772:33–39. doi:10.1016/j.aca.2013.02.021
  • Donahue, W. F., E. W. Allen, and D. W. Schindler. 2006. Impacts of coal-fired power plants on trace metals and polycyclic aromatic hydrocarbons (PAHs) in lake sediments in central Alberta, Canada. Journal of Paleolimnology 35:111–28. doi:10.1007/s10933-005-7878-8
  • Fan, J., Z. Dong, M. Qi, R. Fu, and L. Qu. 2013. Monolithic graphene fibers for solid-phase microextraction. Journal of Chromatography A 3120:27–32. doi:10.1016/j.chroma.2013.10.065
  • Gaca, S. L., J. Carlier, J. C. Camart, C. Cren-Olivé, and C. Rolando. 2004. Monoliths for microfluidic devices in proteomics. Journal of Chromatography B 808:3–14. doi:10.1016/j.jchromb.2004.03.067
  • Gibson, G. T. T., S. M. Mugo, and R. D. Oleschuk. 2008. Surface-mediated effects on porous polymer monolith formation within capillaries. Polymer 49:3084–90. doi:10.1016/j.polymer.2008.05.014
  • Guibin, J., M. Huang, Y. Cai, J. Lv, and Z. Zhao. 2006. Progress of solid-phase microextraction coatings and coating techniques. Journal of Chromatographic Science 44:325–32. doi:10.1093/chromsci/44.6.324
  • Guiochon, G. 2007. Monolithic columns in high-performance liquid chromatography. Journal of Chromatography A 1168:101–68. doi:10.1016/j.chroma.2007.05.090
  • Haseloh, S., P. van der Schoot, and R. Zentel. 2010. Control of mesogen configuration in colloids of liquid crystalline polymers. Soft Matter 6:4112–19. doi:10.1039/c0sm00125b
  • Knob, R., C. Kulsing, R. I. Boysen, M. Macka, and M. T. W. Hearn. 2015. Surface-area expansion with monolithic open tubular columns. Trends in Analytical Chemistry 67:16–25. doi:10.1016/j.trac.2014.12.004
  • Kurganov, A. 2013. Monolithic column in gas chromatography. Analytica Chimica Acta 775:25–40. doi:10.1016/j.aca.2013.02.039
  • Ladner, Y., G. Cretier, and K. Faure. 2015. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: An attractive technology. Methods in Molecular Biology 1274:161–67. doi:10.1007/978-1-4939-2353-3_14
  • Liu, L., J. Cheng, G. Matsadiq, and J. K. Li. 2011. Novel polymer monolith microextraction using a poly-(methyl methacrylate-co-ethylene dimethacrylate) monolith and its application to the determination of polychlorinated biphenyls in water samples. Chemosphere 83:1307–12. doi:10.1016/j.chemosphere.2011.04.020
  • Matyjaszewski, K. 2012. Atom Transfer Radical Polymerization (ATRP): Current status and future perspectives. Macromolecules 45:4015–39.
  • Menezes, H. C., M. J. N. Paiva, R. R. Santos, L. P. Sousa, S. F. Resende, J. A. Saturnino, B. P. Paulo, and Z. L. Cardea. 2013. A sensitive GC/MS method using cold fiber SPME to determine polycyclic aromatic hydrocarbons in spring water. Microchemical Journal 110:209–14. doi:10.1016/j.microc.2013.03.010
  • Miller, M. D., G. L. Baker, and M. L. Bruening. 2004. Polymer-brush stationary phases for open-tubular capillary electrochromatography. Journal of Chromatography A 1044:323–30. doi:10.1016/j.chroma.2004.04.071
  • Mugo, S. M., K. Ayton, L. Huybregts, and T. Zhou. 2012. Porous polymer monolith microextraction platform for online GC-MS applications. In Advanced gas chromatography—Progress in agricultural, biomedical and industrial applications, ed. M. A. Mohd, 67–82. Croatia: Intech.
  • Mugo, S. M., L. Huybregts, and J. Mazurok. 2014. A porous layer open tubular monolith on microstructured optical fibre for microextraction and online GC-MS applications. Analytical Methods 6:1291–95. doi:10.1039/c3ay41732h
  • Murthy, J., R. Rathnasekara, and Z. El Rassi. 2015. Recent advances in nonpolar and polar organic monoliths for HPLC and CEC. Electrophoresis 36:76–100. doi:10.1002/elps.201400426
  • Qin, W., W. Zhang, L. Song, Y. Zhang, and X. Qian. 2010. Surface initiated atom transfer radical polymerization: Access to three dimensional wavelike polymer structure modified capillary columns for online phosphopeptide enrichment. Analytical Chemistry 82:9461–68. doi:10.1021/ac1021437
  • Schweitz, L. 2002. Molecularly imprinted polymer coatings for open-tubular capillary electrochromatography prepared by surface initiation. Analytical Chemistry 74:1192–96. doi:10.1021/ac0156520
  • Svec, F., and J. M. J. Fréchet. 1992. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Analytical Chemistry 54:820–22.
  • Svec, F., and A. A. Kurganov. 2008. Less common applications of monoliths: III. Gas chromatography. Journal of Chromatography A 1184:281–25. doi:10.1016/j.chroma.2007.07.014
  • Svec, F., and Y. Lv. 2015. Advances and recent trends in the field of monolithic columns for chromatography. Analytical Chemistry 87:250–73. doi:10.1021/ac504059c
  • Tan, Z. J., and V. T. Remcho. 1997. Preparation and evaluation of bonded linear polymethacrylate stationary phases for open tubular capillary electrokinetic chromatography. Analytical Chemistry 69:581–86. doi:10.1021/ac960894z
  • Wang, X., X. Li, Z. Li, Y. Zhang, Y. Bai, and H. Liu. 2014. Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Analytical Chemistry 86:4739–47. doi:10.1021/ac500382x
  • Wang, X., Y. Wang, Y. Qin, L. Ding, Y. Chen, and F. Xie. 2015. Sensitive and selective determination of polycyclic aromatic hydrocarbons in mainstream cigarette smoke using graphene-coated solid phase microextraction fiber prior to GC/MS. Talanta 140:102–08. doi:10.1016/j.talanta.2015.03.030
  • Wen, Y., and Y. Q. Feng. 2007. Preparation and evaluation of hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Journal of Chromatography A 1160:90–98. doi:10.1016/j.chroma.2007.05.082
  • Zhang, M., W. Fang, Y. F. Zhang, J. Nie, and Y. Q. Feng. 2006. Novel polymer monolith microextraction using a poly(methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin II receptor antagonists in human urine by capillary zone electrophoresis. Journal of Chromatography A 1102:294–301. doi:10.1016/j.chroma.2005.10.057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.