362
Views
5
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Determination of Hydrogen Peroxide Using a Prussian Blue-Copper Modified Platinum Microelectrode

, , , &
Pages 2006-2017 | Received 27 Jul 2015, Accepted 09 Dec 2015, Published online: 27 Jul 2016

References

  • Chu, Z., L. Shi, Y. Zhang, W. Jin, S. Warren, D. Ward, and E. Dempsey. 2012. Single layer Prussian blue grid as a versatile enzyme trap for low-potential biosensors. Journal of Materials Chemistry 22:14874–79. doi:10.1039/c2jm33083k
  • Curulli, A., F. Valentini, S. Orlanduci, M. L. Terranova, and G. Palleschi. 2004. Pt based enzyme electrode probes assembled with Prussian blue and conducting polymer nanostructures. Biosensors and Bioelectronics 20:1223–32. doi:10.1016/j.bios.2004.06.026
  • Gong, K. 2013. Vertically-aligned Prussian blue/carbon nanotube nanocomposites on a carbon microfiber as a biosensing scaffold for ultrasensitively detecting glucose. Journal of Colloid and Interface Science 410:152–57. doi:10.1016/j.jcis.2013.08.005
  • Han, J.-H., H. Boo, S. Park, and T. D. Chung. 2006. Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor. Electrochimica Acta 52:1788–91. doi:10.1016/j.electacta.2005.12.060
  • Karyakin, A. A., E. A. Kuritsyna, E. E. Karyakina, and V. L. Sukhanov. 2009. Diffusion controlled analytical performances of hydrogen peroxide sensors: Towards the sensor with the largest dynamic range. Electrochimica Acta 54:5048–52. doi:10.1016/j.electacta.2008.11.049
  • Karyakin, A. A., E. A. Puganova, I. A. Bolshakov, and E. E. Karyakina. 2007. Electrochemical sensor with record performance characteristics. Angewandte Chemie International Edition 46:7678–80. doi:10.1002/anie.200700341
  • Karyakina, E. E., D. V. Vokhmyanina, N. V. Sizova, A. N. Sabitov, A. V. Borisova, T. G. Sazontova, Y. V. Arkhipenko, V. A. Tkachuk, Y. A. Zolotov, and A. A. Karyakin. 2009. Kinetic approach for evaluation of total antioxidant activity. Talanta 80:749–53. doi:10.1016/j.talanta.2009.07.059
  • Luca, S. D., M. Florescu, M. E. Ghica, A. Lupu, G. Palleschi, C. M. A. Brett, and D. Compagnone. 2005. Carbon film electrodes for oxidase-based enzyme sensors in food analysis. Talanta 68 (2):171–78. doi:10.1016/j.talanta.2005.06.017
  • Lupu, S., F. Javier del Campo, and F. X. Muñoz. 2010. Development of microelectrode arrays modified with inorganic–organic composite materials for dopamine electroanalysis. Journal of Electroanalytical Chemistry 639:147–53. doi:10.1016/j.jelechem.2009.12.003
  • Lowinsohn, D., and M. Bertotti. 2007. Flow injection analysis of blood L-lactate by using a Prussian blue-based biosensor as amperometric detector. Analytical Biochemistry 365:260–65. doi:10.1016/j.ab.2007.03.015
  • Lowinsohn, D., and M. Bertotti. 2008. A biosensor based on immobilization of lactate oxidase in a PB-CTAB film for FIA determination of lactate in beer samples. Journal of the Brazilian Chemical Society 19 (4):637–42. doi:10.1590/s0103-50532008000400005
  • Mokrushina, A. V., M. Heim, E. E. Karyakina, A. Kuhn, and A. A. Karyakin. 2013. Enhanced hydrogen peroxide sensing based on Prussian blue modified macroporous microelectrodes. Electrochemistry Communications 29:78–80. doi:10.1016/j.elecom.2013.01.004
  • Mukherjee, S., B. R. Rao, B. Sreedhar, P. Paik, and C. R. Patra. 2015. Copper Prussian blue analogue: Investigation into multifunctional activities for biomedical applications. Chemical Communications 51:7325–28. doi:10.1039/c5cc00362h
  • Piermarini, S., G. Volpe, M. Esti, M. Simonetti, and G. Palleschi. 2011. Real time monitoring of alcoholic fermentation with low-cost amperometric biosensors. Food Chemistry 127 (2):749–54. doi:10.1016/j.foodchem.2011.01.008
  • Pribil, M. M., F. Cortés-Salazar, E. A. Andreyev, A. Lesch, E. E. Karyakina, O. G. Voronin, H. H. Girault, and A. A. Karyakin. 2014. Rapid optimization of a lactate biosensor design using soft probes scanning electrochemical microscopy. Journal of Electroanalytical Chemistry 731:112–18. doi:10.1016/j.jelechem.2014.08.014
  • Radulescu, M.-C., B. Bucur, M.-P. Bucur, and G. L. Radu. 2014. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis. Sensors 14 (1):1028–38. doi:10.3390/s140101028
  • Radulescu, M.-C., M.-P. Bucur, B. Bucur, and G. L. Radu. 2015. Biosensor based on inhibition of monoamine oxidases A and B for detection of β-carbolines. Talanta 137:94–99. doi:10.1016/j.talanta.2015.02.013
  • Reguera, E., J. Fernández-Bertrán, and J. Balmaseda. 1999. The existence of ferrous ferricyanide. Transition Metal Chemistry 24:648–54.
  • Salazar, P., M. Martín, R. D. O’Neill, R. Roche, and J. L. González-Mora. 2012a. Surfactant-promoted Prussian blue-modified carbon electrodes: Enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Colloids and Surfaces B: Biointerfaces 92:180–89. doi:10.1016/j.colsurfb.2011.11.047
  • Salazar, P., M. Martín, R. D. O’Neill, R. Roche, and J. L. González-Mora. 2012b. Biosensors based on Prussian blue modified carbon fibers electrodes for monitoring lactate in the extracellular space of brain tissue. International Journal of Electrochemical Science 7:5910–26.
  • Salazar, P., M. Martín, R. Roche, J. L. González-Mora, and R. D. O’Neill. 2010a. Microbiosensors for glucose based on Prussian blue modified carbon fiber electrodes for in vivo monitoring in the central nervous system. Biosensors and Bioelectronics 26:748–53. doi:10.1016/j.bios.2010.06.045
  • Salazar, P., M. Martína, R. Rochea, R. D. O’Neill, and J. L. González-Mora. 2010b. Prussian blue-modified microelectrodes for selective transduction in enzyme-based amperometric microbiosensors for in vivo neurochemical monitoring. Electrochimica Acta 55:6476–84. doi:10.1016/j.electacta.2010.06.036
  • Sharma, M. K., and S. K. Aggarwal. 2013. Simultaneous formation of Prussian blue and copper hexacyanoferrate from a solution of Cu2+ and K3[Fe(CN)6] in presence of HAuCl4. Journal of Electroanalytical Chemistry 705:64–67. doi:10.1016/j.jelechem.2013.07.023
  • Sitnikova, N. A., A. V. Borisova, M. A. Komkova, and A. A. Karyakin. 2011. Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates. Analytical Chemistry 83 (6):2359–63. doi:10.1021/ac1033352
  • Voronin, O. G., A. Hartmann, C. Steinbach, A. A. Karyakin, A. R. Khokhlov, and C. Kranz. 2012. Prussian blue-modified ultramicroelectrodes for mapping hydrogen peroxide in scanning electrochemical microscopy (SECM). Electrochemistry Communications 23:102–05. doi:10.1016/j.elecom.2012.07.017
  • Wang, J., X. Zhang, and M. Prakash. 1999. Glucose microsensors based on carbon paste enzyme electrodes modified with cupric hexacyanoferrate. Analytica Chimica Acta 395:11–16. doi:10.1016/s0003-2670(99)00306-2
  • Weltin, A., J. Kieninger, B. Enderle, A.-K. Gellner, B. Fritsch, and G. A. Urban. 2014. Polymer-based, flexible glutamate and lactate microsensors for in vivo applications. Biosensors and Bioelectronics 61:192–99. doi:10.1016/j.bios.2014.05.014
  • Zou, Y., L.-X. Sun, and F. Xu. 2007. Biosensor based on polyaniline–Prussian blue/multi-walled carbon nanotubes hybrid composites. Biosensors and Bioelectronics 22:2669–74. doi:10.1016/j.bios.2006.10.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.