157
Views
3
CrossRef citations to date
0
Altmetric
PRECONCENTRATION TECHNIQUES

Isolation of Epigallocatechin Gallate from Plant Extracts with Metallic Pivot-Assisted Dummy Imprinting

, , &
Pages 2031-2042 | Received 15 Aug 2015, Accepted 09 Dec 2015, Published online: 26 Feb 2016

References

  • Bai, L. H., X. X. Chen, Y. P. Huang, Q. W. Zhang, and Z. S. Liu. 2013. Chiral separation of racemic mandelic acids by use of an ionic liquid-mediated imprinted monolith with a metal ion as self-assembly pivot. Analytical and Bioanalytical Chemistry 405 (27):8935–43. doi:10.1007/s00216-013-7304-4
  • Chen, L. X., S. F. Xu, and J. H. Li. 2011. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chemical Society Reviews 40:2922–42. doi:10.1039/c0cs00084a
  • Chen, S., A. Li, L. Zhang, and J. Gong. 2015. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid. Analytic Chimica Acta 896:68–77. doi:10.1016/j.aca.2015.09.022
  • Chen, S., Z. Luo, X. Ma, L. Xue, H. Lan, and W. Zhang. 2012. Efficient separation and purification of epigallocatechin based on epigallocatechin gallate-imprinted polymer prepared with chitosan as matrix. Analytical Letters 45:2300–09. doi:10.1080/00032719.2012.686132
  • Cleland, D., and A. McCluskey. 2013. The use of effective fragment potentials in the design and synthesis of molecularly imprinted polymers for the group recognition of PCBs. Organic & Biomolecular Chemistry 11 (28):4646–56. doi:10.1039/c3ob27168d
  • Denderz, N., and J. Lehotay. 2014. Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography. Journal of Chromatography A 1372:72–80. doi:10.1016/j.chroma.2014.10.070
  • Duan, Y., X. Luo, Y. Qin, H. Zhang, G. Sun, X. Sun, and Y. Yan. 2013. Determination of epigallocatechin-3-gallate with a high-efficiency electrochemical sensor based on a molecularly imprinted poly(o-phenylenediamine) film. Journal of Applied Polymer Science 129:2882–90. doi:10.1002/app.39002
  • Haginaka, J., H. Tabo, M. Ichitani, T. Takihara, A. Sugimoto, and H. Sambe. 2007. Uniformly-sized, molecularly imprinted polymers for (−)-epigallocatechin gallate, -epicatechin gallate and -gallocatechin gallate by multi-step swelling and polymerization method. Journal of Chromatography A 1156:45–50. doi:10.1016/j.chroma.2006.10.026
  • Hu, J. H., T. Feng, W. L. Li, H. Zhai, Y. Liu, L. Y. Wang, C. L. Hu, and M. X. Xie. 2014. Surface molecularly imprinted polymers with synthetic dummy template for simultaneously selective recognition of nine phthalate esters. Journal of Chromatography A 1330:6–13. doi:10.1016/j.chroma.2014.01.008
  • Hu, X., L. Xie, J. Guo, H. Li, X. Jiang, Y. Zhang, and S. Shi. 2015. Hydrophilic gallic acid-imprinted polymers over magnetic mesoporous silica microspheres with excellent molecular recognition ability in aqueous fruit juices. Food Chemistry 179:206–12. doi:10.1016/j.foodchem.2015.02.007
  • Iacob, B. C., E. Bodoki, and R. Oprean. 2014. Recent advances in capillary electrochromatography using molecularly imprinted polymers. Electrophoresis 35 (19):2722–32. doi:10.1002/elps.201400253
  • Ji, W., X. Ma, H. Xie, L. Chen, X. Wang, H. Zhao, and L. Huang. 2014. Molecularly imprinted polymers with synthetic dummy template for simultaneously selective removal and enrichment of ginkgolic acids from Ginkgo biloba L. leaves extracts. Journal of Chromatography A 1368:44–51. doi:10.1016/j.chroma.2014.09.070
  • Kubo, T., K. Hosoya, Y. Watabe, T. Ikegami, N. Tanaka, T. Sano, and K. Kaya. 2004. Polymer-based adsorption medium prepared using a fragment imprinting technique for homologues of chlorinated bisphenol A produced in the environment. Journal of Chromatography A 1029:37–41. doi:10.1016/j.chroma.2003.12.050
  • Li, S., C. Liao, W. Li, and Y. X. Hao. 2007. Rationally designing molecularly imprinted polymer towards predetermined high selectivity by using metal as assembled pivot. Macromolecular Bioscience 7:1112–20. doi:10.1002/mabi.200700047
  • Li, X. Y., L. Ma, Y. P. Huang, Z. S. Liu, and H. A. Aisa. 2015. Preparation of metallic pivot-based imprinted monoliths with a hydrophilic macromonomer. RSC Advances 5:36753–61. doi:10.1039/c5ra02699g
  • Sun, X., J. Wang, Y. Li, J. Jin, J. Yang, F. Li, S. M. Shah, and J. Chen. 2014. Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers. Journal of Chromatography A 1360:9–16. doi:10.1016/j.chroma.2014.07.055
  • Sun, X., C. Zhang, Y. P. Huang, and Z. S. Liu. 2015. Separation of epigallocatechin gallate from natural plant extracts using crowding agents-assisted imprinted polymers. Chromatographia 78 (15–16):995–1003. doi:10.1007/s10337-015-2914-y
  • Tian, M., H. Zhang, and K. H. Row. 2012. Solid-phase extraction of catechin compounds from green tea by catechin molecular imprinted polymers. Asian Journal Chemistry 24:4606–10.
  • Wu, L. Q., and Y. Z. Li. 2003. Picolinamide-Cu(Ac)2-imprinted polymer with high potential for recognition of picolinamide-copper acetate complex. Analytica Chimica Acta 482:175–81. doi:10.1016/s0003-2670(03)00208-3
  • Wulff, G., and J. Liu. 2012. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: The role of transition state stabilization. Accounts of Chemical Research 45 (2):239–47. doi:10.1021/ar200146m
  • Zhang, M., J. Zeng, Y. Wang, and X. Chen. 2013. Developments and trends of molecularly imprinted solid-phase microextraction. Journal of Chromatographic Science 51 (7):577–86. doi:10.1093/chromsci/bms260
  • Zhao, L., L. Ban, Q. W. Zhang, Y. P. Huang, and Z. S. Liu. 2011. Preparation and characterization of imprinted monolith with metal ion as pivot. Journal of Chromatography A 1218:9071–79. doi:10.1016/j.chroma.2011.10.027
  • Zhong, D. D., Y. P. Huang, X. L. Xin, Z. S. Liu, and H. A. Aisa. 2013. Preparation of metallic pivot-based imprinted monolith for polar template. Journal of Chromatography B 934:109–16. doi:10.1016/j.jchromb.2013.07.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.