355
Views
9
CrossRef citations to date
0
Altmetric
SPECTROSCOPY

Colorimetric and Fluorescent Determination of Fluoride Using a Novel Naphthalene Diimide Boronic Acid Derivative

, , &
Pages 2301-2311 | Received 22 Sep 2015, Accepted 25 Jan 2016, Published online: 29 Feb 2016

References

  • Ali, H. D. P., P. E. Kruger, and T. Gunnlaugsson. 2008. Colorimetric ‘naked-eye’ and fluorescent sensors for anions based on amidourea functionalised 1,8-naphthalimide structures: Anion recognition via either deprotonation or hydrogen bonding in DMSO. New Journal of Chemistry 32:1153–61. doi:10.1039/B715533F
  • Andrich, G., J. F. Boas, A. M. Bond, G. D. Fallon, K. P. Ghiggino, C. F. Hogan, J. A. Hutchison, M. A.-P. Lee, S. J. Langford, J. R. Pilbrow, G. J. Troup, and C. P. Woodward. 2004. Spectroscopy of naphthalene diimides and their anion radicals. Australian Journal of Chemistry 57:1011–19. doi:10.1071/CH04130
  • Berionni, G., V. Morozova, M. Heininger, P. Mayer, P. Knochel, and H. Mayr. 2013. Electrophilic aromatic substitutions of aryltrifluoroborates with retention of the BF3-group: Quantification of the activating and directing effects of the trifluoroborate group. Journal of the American Chemical Society 135:6317–24. doi:10.1021/ja4017655
  • Bhosale, S. V., S. V. Bhosale, M. B. Kalyankar, and S. J. Langford. 2009. A core-substituted naphthalene diimide fluoride sensor. Organic Letters 11:5418–21. doi:10.1021/ol9022722
  • Bhosale, S. V., C. H. Janiab, and S. J. Langford. 2008. Chemistry of naphthalene diimides. Chemical Society Reviews 37:331–42. doi:10.1039/B615857A
  • Boukhris, A., I. Laffont-Schwob, I. Mezghani, L. E. Kadri, P. Prudent, A. Pricop, T. Tatoni, and M. Chaieb. 2015. Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation. Chemosphere 119:217–23. doi:10.1016/j.chemosphere.2014.06.007
  • Buckland, D., S. V. Bhosale, and S. J. Langford. 2011. A chemodosimer based on a core-substituted naphthalene diimide for fluoride ion detection. Tetrahedron Letters 52:1990–92. doi:10.1016/j.tetlet.2011.02.080
  • Cao, H., T. McGill, and M. D. Heagy. 2004. Substituent effects on monoboronic acid sensors for saccharides based on N-phenyl-1,8-naphthalenedicarboximides. Journal of Organic Chemistry 69:2959–66. doi:10.1021/jo035760h
  • Demeter, A., T. Bérces, L. Biczók, V. Wintgens, P. Valat, and J. Kossanyi. 1996. Comprehensive model of the photophysics of N-phenylnaphthalimides: The role of solvent and rotational relaxation. Journal of Physical Chemistry 100:2001–11. doi:10.1021/jp951133n
  • DiCesare, N., and J. R. Lakowicz. 2002. New sensitive and selective fluorescent probes for fluoride using boronic acids. Analytical Biochemistry 301:111–16. doi:10.1006/abio.2001.5476
  • Dos Santos, C. M. G., T. McCabe, G. W. Watson, P. E. Kruger, and T. Gunnlaugsson. 2008. The recognition and sensing of anions through “Positive allosteric effects” using simple urea−amide receptors. Journal of Organic Chemistry 73:9235–44. doi:10.1021/jo8014424
  • Galbraith, E., and T. D. James. 2010. Boron based anion receptors as sensors. Chemical Society Reviews 39:3831–42. doi:10.1039/B926165F
  • Galvis-Sánchez, A. C., J. R. Santos, and A. O. S. S. Rangel. 2013. Standard addition flow method for potentiometric measurements at low concentration levels: Application to the determination of fluoride in food samples. Talanta 133:1–6. doi:10.1111/eos.12186
  • Goswami, S., A. K. Das, A. Manna, A. K. Maity, H. K. Fun, C. K. Quah, and P. Saha. 2014. A colorimetric and ratiometric fluorescent turn-on fluoride chemodosimeter and application in live cell imaging: High selectivity via specific Si–O cleavage in semi aqueous media and prompt recovery of ESIPT along with the X-ray structures. Tetrahedron Letters 55:2633–38. doi:10.1016/j.tetlet.2014.03.003
  • Grice, M. M., B. H. Alexander, R. Hoffbeck, and D. Kampa. 2007. Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. Journal of Occupational & Environmental Medicine 49:722–29. doi:10.1097/JOM.0b013e3180582043
  • Guha, S., F. S. Goodson, R. J. Clark, and S. Saha. 2012. Deciphering anion–π–acceptor interactions and detecting fluoride using a naphthalene diimide-based Pd (II) coordination polymer. Crystal Engineering Communications 14:1213–15. doi:10.1039/C2CE06363H
  • Guha, S., F. S. Goodson, L. J. Corson, and S. Saha. 2012. Boundaries of anion/naphthalene diimide interactions: From anion−π interactions to anion-induced charge-transfer and electron-transfer phenomena. Journal of the American Chemical Society 134:13679–91. doi:10.1021/ja303173n
  • Guha, S., F. S. Goodson, S. Roy, L. J. Corson, C. A. Gravenmier, and S. Saha. 2011. Electronically regulated thermally and light-gated electron transfer from anions to naphthalene diimides. Journal of the American Chemical Society 133:15256–59.
  • Guha, S., and S. Saha. 2010. Fluoride ion sensing by an anion–π interaction. Journal of the American Chemical Society 132:17674–77. doi:10.1021/ja107382x
  • Gunnlaugsson, T., P. E. Kruger, P. Jensen, J. Tierney, H. D. P. Ali, and G. M. Hussey. 2005. Colorimetric “naked eye” sensing of anions in aqueous solution. Journal of Organic Chemistry 70:10875–78. doi:10.1021/jo0520487
  • Gunnlaugsson, T., P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffer, and G. Hussey. 2003. Dual responsive chemosensors for anions: The combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule. Tetrahedron Letters 44:6575–78. doi:10.1016/S0040-4039(03)01699-X
  • Guo, Z., I. Shin, and J. Yoon. 2012. Recognition and sensing of various species using boronic acid derivatives. Chemical Communications 48:5956–67. doi:10.1039/C2CC31985C
  • Hansch, C., A. Leo, and R. W. Taft. 1991. A survey of Hammett substituent constants and resonance and field parameters. Chemical Reviews 91:165–95. doi:10.1021/cr00002a004
  • Jana, P., S. K. Maity, S. Bera, P. K. Ghorai, and D. Haldar. 2013. Hierarchical self-assembly of naphthalene bisimides to fluorescent microspheres and fluoride sensing. Crystal Engineering Communications 15:2512–18. doi:10.1039/C3CE26700H
  • Jiao, Y., B. Zhu, J. Chen, and X. Duan. 2015. Fluorescent sensing of fluoride in cellular system. Theranostics 5:173–87. doi:10.7150/thno.9860
  • Koskela, S. J. M., T. M. Fyles, and T. D. James. 2005. A ditopic fluorescent sensor for potassium fluoride. Chemical Communications 945–47. doi:10.1039/B415522J
  • Kubo, Y., A. Kobayashi, T. Ishida, Y. Misawa, and T. D. James. 2005. Detection of anions using a fluorescent alizarin–phenylboronic acid ensemble. Chemical Communications 2846–48. doi:10.1039/B503588K
  • Kumar, M., and S. J. George. 2011. Spectroscopic probing of the dynamic self-assembly of an amphiphilic naphthalene diimide exhibiting reversible vapochromism. Chemistry A European Journal 17:11102–06. doi:10.1002/chem.201101642
  • Lee, M., S. Jo, D. Lee, Z. Xu, and J. Yoon. 2015. A new naphthalimide derivative as a selective fluorescent and colorimetric sensor for fluoride, cyanide and CO2. Dyes and Pigments 1202:88–92. doi:10.1016/j.dyepig.2015.04.029
  • Li, J., X. Pang, Y. Wang, Y. Che, and J. Zhao. 2013. A new insight into fluoride anion in electron transfer reactions. Catalysis Today 224:258–62. doi:10.1016/j.cattod.2013.12.007
  • Martínez-Aguirre, M. A., and A. K. Yatsimirsky. 2015. Brønsted versus Lewis acid type anion recognition by arylboronic acids. Journal of Organic Chemistry 80:4985–89. doi:10.1021/acs.joc.5b00377
  • Peters, J. A. 2014. Interactions between boric acid derivatives and saccharides in aqueous media: Structures and stabilities of resulting esters. Coordination Chemistry Reviews 268:1–22. doi:10.1016/j.ccr.2014.01.016
  • Swamy, K. M. K., Y. J. Lee, H. N. Lee, J. Chun, Y. Kim, S. -J. Kim, and J. Yoon. 2006. A new fluorescein derivative bearing a boronic acid group as a fluorescent chemosensor for fluoride ion. Journal of Organic Chemistry 71:8626–28. doi:10.1021/jo061429x
  • Thakur, A., D. Mandal, S. Sao, and S. Ghosh. 2012. Catecholboryl-functionalized ferrocene based Lewis acid system: A selective probe for fluoride ion through multiple channels. Journal of Organometallic Chemistry 715:129–35. doi:10.1016/j.jorganchem.2012.06.005
  • Van der Kaaij, N. C. W., M. H. van der Veen, M. A. E. van der Kaaij, and J. M. ten Cate. 2015. A prospective, randomized placebo-controlled clinical trial on the effects of a fluoride rinse on white spot lesion development and bleeding in orthodontic patients. European Journal of Oral Sciences 123:186–93. doi:10.1111/eos.12186
  • Wade, C. R., A. E. J. Broomsgrove, S. Aldridge, and F. P. Gabbaï. 2010. Fluoride ion complexation and sensing using organoboron compounds. Chemical Reviews 110:3958–84. doi:10.1021/cr900401a
  • Xue, M., X. Wang, L. Duan, W. Gao, L. Ji, and B. Tang. 2012. A new nanoprobe based on FRET between functional quantum dots and gold nanoparticles for fluoride anion and its applications for biological imaging. Biosensors and Bioelectronics 36:168–73. doi:10.1016/j.bios.2012.04.007
  • Zhou, Y., J. F. Zhang, and J. Yoon. 2014. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chemical Reviews 114:5511–71. doi:10.1021/cr400352m

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.