311
Views
11
CrossRef citations to date
0
Altmetric
METAL SPECIATION

Optimization of Cadmium Removal from Water by Hydroxyapatite Using Experimental Design Methodology

, , &
Pages 2513-2524 | Received 16 Oct 2015, Accepted 02 Feb 2016, Published online: 29 Feb 2016

References

  • Abdessalem, A. K., N. Oturan, N. Bellakhal, M. Dachraoui, and M. A. Oturan. 2008. Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B: Environmental 78:334–41. doi:10.1016/j.apcatb.2007.09.032
  • Ahmad, M. A., and R. Alrozi. 2010. Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chemical Engineering Journal 165:883–90. doi:10.1016/j.cej.2010.10.049
  • Albarelli, J. Q., R. B. Rabelo, D. T. Santos, M. M. Beppu, and M. A. A. Meireles. 2011. Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal. Journal of Supercritical Fluids 58:343–51. doi:10.1016/j.supflu.2011.07.014
  • Aloma, I., M. A. Martin-Lara, I. L. Rodriguez, G. Blazquez, and M. Calero. 2012. Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers 43:275–81. doi:10.1016/j.jtice.2011.10.011
  • Azila, Y. Y., M. D. Mashitah, and S. Bhatia. 2008. Process optimization studies of lead (Pb(II)) biosorption onto immobilized cells of Pycnoporus sanguineus using response surface methodology. Bioresource Technology 99:8549–52. doi:10.1016/j.biortech.2008.03.056
  • Bulgariu, L., D. Bulgariu, and T. Sarghie. 2005. Spectrophotometric determination of cadmium(II) using p,p′-dinitro-SYM-diphenylcarbazid in aqueous solutions. Analytical Letters 38:2365–75. doi:10.1080/00032710500316597
  • Carvalho, W. A., C. Vignado, and J. Fontana. 2008. Ni(II) removal from aqueous effluents by silylated clays. Journal of Hazardous Materials 153:1240–47. doi:10.1016/j.jhazmat.2007.09.083
  • Celevi, O., C. Uzum, T. Shahwan, and H. N. Erten. 2007. A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials 148:761–67. doi:10.1016/j.jhazmat.2007.06.122
  • Choksi, P. M., and V. Y. Joshi. 2007. Adsorption kinetic study for the removal of nickel (II) and aluminum (III) from an aqueous solution by natural adsorbents. Desalination 208:216–31. doi:10.1016/j.desal.2006.04.081
  • Djukic, A., U. Jovanovic, T. Tuvic, V. Andric, J. G. Novakovic, N. Ivanovic, and L. Matovic. 2013. The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: Simultaneous sorption of Ni, Cr, Cd and Pb ions. Ceramics International 9:7173–78. doi:10.1016/j.ceramint.2013.02.061
  • Ensafi, A. A., A. Benvidi, and T. Khayamian. 2004. Determination of cadmium and zinc in water and alloys by adsorption stripping voltammetry. Analytical Letters 37:449–62. doi:10.1081/al-120028618
  • Ertaş, R., and N. Öztürk. 2013. Removal of lead from aqueous solutions by using chestnut shell as an adsorbent. Desalination and Water Treatment 51:2903–08. doi:10.1080/19443994.2012.748266
  • Farinella, N. V., G. D. Matos, E. L. Lehmann, and M. A. Z. Arruda. 2008. Grape bagasse as an alternative natural adsorbent of cadmium and lead for effluent treatment. Journal of Hazardous Materials 154:1007–12. doi:10.1016/j.jhazmat.2007.11.005
  • Freundlich, H. M. F. 1906. Over the adsorption in solution. Journal of Physical Chemistry 57:385.
  • Ghaedi, A. M., M. Ghaedi, A. Vafaei, N. Iravani, M. Keshavarz, M. Rad, I. Tyagi, S. Agarwal, and V. K. Gupta. 2015. Adsorption of copper (II) using modified activated carbon prepared from Pomegranate wood: Optimization by bee algorithm and response surface methodology. Journal of Molecular Liquids 206:195–206. doi:10.1016/j.molliq.2015.02.029
  • Gupta, S. S., and K. G. Bhattacharyya. 2006. Adsorption of Ni(II) on clays. Journal of Colloid and Interface Science 295:21–32. doi:10.1016/j.jcis.2005.07.073
  • Gupta, V. K., M. R. Ganjali, A. Nayak, B. Bhushan, and S. Agarwal. 2012. Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chemical Engineering Journal 197:330–42. doi:10.1016/j.cej.2012.04.104
  • Haaland, D. P. 1989. Experimental design in biotechnology. New York, Basel: Marcel Dekker, Inc.
  • Ince, M. 2014. Comparision of low-cost and eco-friendly adsorbent for adsorption of Ni(II). Atomic Spectroscopy 35:223–33.
  • Jiang, M. Q., X. Y. Jin, X. Q. Lu, and Z. L. Chen. 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252:33–39. doi:10.1016/j.desal.2009.11.005
  • Kim, K. H., A. A. Keller, and J. K. Yang. 2013. Removal of heavy metals from aqueous solution using a novel composite of recycled materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 425:6–14. doi:10.1016/j.colsurfa.2013.02.044
  • Kocaoba, S., Y. Orhan, and T. Akyüz. 2007. Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination 214:1–10. doi:10.1016/j.desal.2006.09.023
  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40:1361–403. doi:10.1021/ja02242a004
  • Li, Q. M., R. Z. Ouyang, G. B. Xu, and G. G. Li. 2005. Cadmium preconcentration from aqueous environmental samples using microcrystalline phenolphthalein modified by crystal violet. Analytical Letters 38:1987–98. doi:10.1080/00032710500232869
  • Memon, J. R., S. Q. Memon, M. I. Bhanger, A. El-Turki, K. R. Hallam, and G. C. Allen. 2009. Banana peel: A green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater. Colloids and Surfaces B: Biointerfaces 70:232–37. doi:10.1016/j.colsurfb.2008.12.032
  • Mondal, M. K. 2009. Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column. Journal of Environmental Management 90:3266–71. doi:10.1016/j.jenvman.2009.05.025
  • Myers, R. H., and D. C. Montgomery. 2001. Response surface methodology: Process and product optimization using designed experiments. New York: John Wiley & Sons, Inc.
  • Özçimen, D., and A. Ersoy-Meriçboyu. 2009. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons. Journal of Hazardous Materials 168:1118–25. doi:10.1016/j.jhazmat.2009.02.148
  • Roosta, M., M. Ghaedi, A. Daneshfar, R. Sahraei, and A. Asghari. 2014. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrasonics Sonochemistry 21:242–52. doi:10.1016/j.ultsonch.2013.05.014
  • Roosta, M., M. Ghaedi, A. Daneshfar, R. Sahraei, and A. Asghari. 2015. Optimization of combined ultrasonic assisted/tin sulfide nanoparticle loaded on activated carbon removal of erythrosine by response surface methodology. Journal of Industrial and Engineering Chemistry 21:459–69. doi:10.1016/j.jiec.2014.03.005
  • Roosta, M., M. Ghaedi, N. Shokri, A. Daneshfar, R. Sahraei, and A. Asghari. 2014. Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: Experimental design. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118:55–65. doi:10.1016/j.saa.2013.08.082
  • Shukla, S. R., and R. S. Pai. 2005. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology 96:1430–38. doi:10.1016/j.biortech.2004.12.010
  • Shukla, S. S., L. J. Yu, K. L. Dorris, and A. Shukla. 2005. Removal of nickel from aqueous solutions by sawdust. Journal of Hazardous Materials 121:243–46. doi:10.1016/j.jhazmat.2004.11.025
  • Sud, D., G. Mahajan, and M. P. Kaur. 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresource Technology 99:6017–27. doi:10.1016/j.biortech.2007.11.064
  • Vazquez, G., J. Gonzalez-Alvarez, M. S. Freire, M. Calvo, and G. Antorrena. 2009. Alkaline pre-extracted chestnut shell as a natural adsorbent: Optimization of phenol removal. Chemical Engineering Transactions 17:251–56.
  • Wang, F. Y., H. J. Wang, and J. W. Ma. 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of Hazardous Materials 177:300–06. doi:10.1016/j.jhazmat.2009.12.032
  • Yao, Z. Y., J. H. Qi, and L. H. Wang. 2010. Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. Journal of Hazardous Materials 174:137–43. doi:10.1016/j.jhazmat.2009.09.027
  • Yonten, V., and N. Aktas. 2014. Exploring the optimum conditions for maximizing the microbial growth of candida intermedia by response surface methodology. Preparative Biochemistry and Biotechnology 44:26–39. doi:10.1080/10826068.2013.782044
  • Yonten, V., M. Tanyol, N. Yildirim, and M. Ince. 2016. Optimization of Remazol Brilliant Blue R dye removal by novel biosorbent P. eryngii immobilized on Amberlite XAD-4 using response surface methodology. Desalination and Water Treatment 57:15592–15602. doi:10.1080/19443994.2015.1070760
  • Zhang, L., Y. H. Zhao, and R. Bai. 2011. Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: Application to cadmium. Journal of Membrane Science 379:69–79. doi:10.1016/j.memsci.2011.05.044
  • Zuorro, A., and R. Lavecchia. 2010. Adsorption of Pb(II) on spent leaves of green and black tea. American Journal of Applied Sciences 7:153–59. doi:10.3844/ajassp.2010.153.159

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.