358
Views
16
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Aptasensor for Rapid and Sensitive Determination of Salmonella Based on Target-Induced Strand Displacement and Gold Nanoparticle Amplification

, , , , , & show all
Pages 2405-2417 | Received 14 Dec 2015, Accepted 04 Feb 2016, Published online: 07 Mar 2016

References

  • Chang, Z., Y. B. Zang, C. B. Chen, P. G. He, and Y. Z. Fang. 2014. Determination of DNA and thrombin by an electrochemical sensor employing aggregation of crosslinked gold nanoparticles and aptamer segments. Analytical Letters 47:309–322. doi:10.1080/00032719.2013.832271
  • Chen, L. Q., S. J. Xiao, L. Peng, T. Wu, J. Ling, Y. F. Li, and C. Z. Huang. 2010. Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. Journal of Physical Chemistry B 114:3655–59. doi:10.1021/jp9104618
  • Cheng, A. K., B. Ge, and H. Z. Yu. 2007. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Analytical Chemistry 79:5158–64. doi:10.1021/ac062214q
  • Das, R. D., C. RoyChaudhuri, S. Maji, S. Das, and H. Saha. 2009. Macroporous silicon based simple and efficient trapping platform for electrical detection of Salmonella typhimurium pathogens. Biosensors and Bioelectronics 24:3215–22. doi:10.1016/j.bios.2009.04.014
  • Dominguez-Benetton, X., S. Sevda, K. Vanbroekhoven, and D. Pant. 2012. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chemical Society Reviews 41:7228–46. doi:10.1039/c2cs35026b
  • Ellington, A. D., and J. W. Szostak. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22. doi:10.1038/346818a0
  • Ferreira, C. S., and S. Missailidis. 2007. Aptamer-based therapeutics and their potential in radiopharmaceutical design. Brazilian Archives of Biology and Technology 50:63–76. doi:10.1590/s1516-89132007000600008
  • Galikowska, E., D. Kunikowska, E. Tokarska-Pietrzak, H. Dziadziuszko, J. M. Los, P. Golec, G. Wegrzyn, and M. Los. 2011. Specific detection of Salmonella enterica and Escherichia coli strains by using ELISA with bacteriophages as recognition agents. European Journal of Clinical Microbiology & Infectious Diseases 30:1067–73. doi:10.1007/s10096-011-1193-2
  • Gan, X., R. Yuan, Y. Chai, Y. Yuan, L. Mao, Y. Cao, and Y. Liao. 2012. 4-(Dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement. Biosensors and Bioelectronics 34:25–29. doi:10.1016/j.bios.2011.11.017
  • Gonzalez-Fernandez, E., N. de-los-Santos-Alvarez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, and P. Tunon-Blanco. 2011. Impedimetric aptasensor for tobramycin detection in human serum. Biosensors and Bioelectronics 26:2354–60. doi:10.1016/j.bios.2010.10.011
  • Hendriksen, R. S., A. R. Vieira, S. Karlsmose, D. M. Lo Fo Wong, A. B. Jensen, H. C. Wegener, and F. M. Aarestrup. 2011. Global monitoring of Salmonella serovar distribution from the world health organization global foodborne infections network country data bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathogens and Disease 8:887–900. doi:10.1089/fpd.2010.0787
  • Hu, Y., X. Xu, Q. Liu, L. Wang, Z. Lin, and G. Chen. 2014. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. Analytical Chemistry 86:8785–90. doi:10.1021/ac502008k
  • Ikebukuro, K., C. Kiyohara, and K. Sode. 2004. Electrochemical detection of protein using a double aptamer sandwich. Analytical Letters 37:2901–909. doi:10.1081/al-200035778
  • Johnson, J. R. 2000. Development of polymerase chain reaction-based assays for bacterial gene detection. Journal of Microbiological Methods 41:201–209. doi:10.1016/s0167-7012(00)00160-3
  • Joshi, R., H. Janagama, H. P. Dwivedi, T. M. Senthil Kumar, L. A. Jaykus, J. Schefers, and S. Sreevatsan. 2009. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Molecular and Cellular Probes 23:20–28. doi:10.1016/j.mcp.2008.10.006
  • Kyprianou, D., A. R. Guerreiro, M. Nirschl, I. Chianella, S. Subrahmanyam, A. P. Turner, and S. Piletsky. 2010. The application of polythiol molecules for protein immobilisation on sensor surfaces. Biosensors and Bioelectronics 25:1049–55. doi:10.1016/j.bios.2009.09.030
  • Luo, C. H., Y. N. Lei, L. Yan, T. X. Yu, Q. Li, D. C. Zhang, S. J. Ding, and H. X. Ju. 2012. A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia coli O111. Electroanalysis 24:1186–91. doi:10.1002/elan.201100700
  • Mirkin, C. A., R. L. Letsinger, R. C. Mucic, and J. J. Storhoff. 1996. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609. doi:10.1038/382607a0
  • Nutiu, R., and Y. Li. 2003. Structure-switching signaling aptamers. Journal of the American Chemical Society 125:4771–78. doi:10.1021/ja028962o
  • Ozalp, V. C., F. Eyidogan, and H. A. Oktem. 2011. Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 4:1137–57. doi:10.3390/ph4081137
  • Pan, C. F., M. Guo, Z. Nie, X. L. Xiao, and S. Z. Yao. 2009. Aptamer-based electrochemical sensor for label-free recognition and detection of cancer cells. Electroanalysis 21:1321–26. doi:10.1002/elan.200804563
  • Peng, H., and L. A. Shelef. 2001. Automated simultaneous detection of low levels of listeriae and salmonellae in foods. International Journal of Food Microbiology 63:225–33. doi:10.1016/s0168-1605(00)00418-9
  • Roda, A., M. Mirasoli, B. Roda, F. Bonvicini, C. Colliva, and P. Reschiglian. 2012. Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchimica Acta 178:7–28. doi:10.1007/s00604-012-0824-3
  • Salam, F., and I. E. Tothill. 2009. Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosensors and Bioelectronics 24:2630–36. doi:10.1016/j.bios.2009.01.025
  • Salam, F., Y. Uludag, and I. E. Tothill. 2013. Real-time and sensitive detection of Salmonella typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta 115:761–67. doi:10.1016/j.talanta.2013.06.034
  • Si, S. H., X. Li, Y. S. Fung, D. R. Zhu. 2001. Rapid detection of Salmonella enteritidis by piezoelectric immunosenor. Microchemical Journal 68:21–27. doi:10.1016/s0026-265x(00)00167-3
  • Singh, A., H. N. Verma, and K. Arora. 2015. Surface plasmon resonance based label-free detection of Salmonella using DNA self assembly. Applied Biochemistry and Biotechnology 175:1330–43. doi:10.1007/s12010-014-1319-y
  • Sun, Q., G. Zhao, and W. Dou. 2015. A nonenzymatic optical immunoassay strategy for detection of Salmonella infection based on blue silica nanoparticles. Analytica Chimica Acta 898:109–115. doi:10.1016/j.aca.2015.09.041
  • Tabrizi, M. A., and M. Shamsipurn. 2015. A label-free electrochemical DNA biosensor based on covalent immobilization of Salmonella DNA sequences on the nanoporous glassy carbon electrode. Biosensors and Bioelectronics 69:100–105. doi:10.1016/j.bios.2015.02.024
  • Valadez, A. M., C. A. Lana, S. I. Tu, M. T. Morgan, and A. K. Bhunia. 2009. Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors (Basel) 9:5810–24. doi:10.3390/s90705810
  • Villamizar, R. A., A. Maroto, F. X. Rius, I. Inza, and M. J. Figueras. 2008. Fast detection of Salmonella infantis with carbon nanotube field effect transistors. Biosensors and Bioelectronics 24:279–83. doi:10.1016/j.bios.2008.03.046
  • Wang, Z. P., H. Xu, J. Wu, J. Ye, and Z. Yang. 2011. Sensitive detection of Salmonella with fluorescent bioconjugated nanoparticles probe. Food Chemistry 125:779–84. doi:10.1016/j.foodchem.2010.09.020
  • Wen, C. Y., J. Hu, Z. L. Zhang, Z. Q. Tian, G. P. Ou, Y. L. Liao, Y. Li, M. Xie, Z. Y. Sun, and D. W. Pang. 2013. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres. Analytical Chemistry 85:1223–30. doi:10.1021/ac303204q
  • Yu, T., W. Cheng, Q. Li, C. Luo, L. Yan, D. Zhang, Y. Yin, S. Ding, and H. Ju. 2012. Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta 93:433–38. doi:10.1016/j.talanta.2012.02.047
  • Zhang, S., J. Xia, and X. Li. 2008. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Analytical Chemistry 80:8382–88. doi:10.1021/ac800857p
  • Zhang, J. K., Y. Wu, B. B. Zhang, M. Li, S. R. Jia, S. H. Jiang, and P. F. Anthony. 2012. Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor. Analytical Letters 45:986–992. doi:10.1080/00032719.2012.670784
  • Zelada-Guillen, G. A., J. Riu, A. Duzgun, and F. X. Rius. 2009. Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angewandte Chemie International Edition 48:7334–37. doi:10.1002/anie.200902090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.