1,456
Views
74
CrossRef citations to date
0
Altmetric
BIOSENSORS

Electrochemical Immunosensors for Food Analysis: A Review of Recent Developments

&
Pages 1-32 | Received 12 Nov 2015, Accepted 15 Mar 2016, Published online: 07 Jul 2016

References

  • Adanyi, N., M. Varadi, N. Kim, and I. Szendro. 2006. Development of new immunosensors for determination of contaminants in food. Current Applied Physics 6 (2):279–86. doi:10.1016/j.cap.2005.07.057
  • Afonso, A. S., B. Perez-Lopez, R. C. Faria, L. H. C. Mattoso, M. Hernandez-Herrero, A. X. Roig-Sagues, M. Maltez-da Costa, and A. Merkoci. 2013. Electrochemical detection of Salmonella using gold nanoparticles. Biosensors and Bioelectronics 40 (1):121–26. doi:10.1016/j.bios.2012.06.054
  • Ahmad, A., and E. Moore. 2012. Electrochemical immunosensor modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene in water. Analyst 137 (24):5839–44. doi:10.1039/c2an35236b
  • Asao, T., Y. Kumeda, T. Kawai, T. Shibata, H. Oda, K. Haruki, H. Nakazawa, and S. Kozaki. 2003. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiology and Infection 130 (1):33–40. doi:10.1017/s0950268802007951
  • Auffan, M., J. Rose, J.-Y. Bottero, G. V. Lowry, J.-P. Jolivet, and M. R. Wiesner. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology 4 (10):634–41. doi:10.1038/nnano.2009.242
  • Balaban, N., and A. Rasooly. 2000. Staphylococcal enterotoxins. International Journal of Food Microbiology 61 (1):1–10. doi:10.1016/S0168-1605(00)00377-9
  • Bange, A., H. B. Halsall, and W. R. Heineman. 2005. Microfluidic immunosensor systems. Biosensors and Bioelectronics 20 (12):2488–503. doi:10.1016/j.bios.2004.10.016
  • Banks, C. E., and R. G. Compton. 2006. New electrodes for old: From carbon nanotubes to edge plane pyrolytic graphite. Analyst 131 (1):15–21. doi:10.1039/B512688 F
  • Battacone, G., A. Nudda, A. Cannas, A. C. Borlino, G. Bomboi, and G. Pulina. 2003. Excretion of aflatoxin M1 in milk of dairy ewes treated with different doses of aflatoxin B1. Journal of Dairy Science 86 (8):2667–75. doi:10.3168/jds.S0022-0302(03)73862-4
  • Besser, R., S. Lett, J. Weber, M. Doyle, T. Barrett, J. Wells, and P. Griffin. 1993. An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157-H7 in fresh-pressed apple cider. Journal of American Medical Association 269 (17):2217–20. doi:10.1001/jama.1993.03500170047032
  • Betarbet, R., T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience 3 (12):1301–06. doi:10.1038/81834
  • Brownson, D. A., L. J. Munro, D. K. Kampouris, and C. E. Banks. 2011. Electrochemistry of graphene: Not such a beneficial electrode material? RSC Advances 1 (6):978–88. doi:10.1039/c1ra00393c
  • Cai, M., L. Zhu, Y. Ding, J. Wang, J. Li, and X. Du. 2012. Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes. Materials Science and Engineering C 32 (8):2623–27. doi:10.1016/j.msec.2012.08.017
  • Campas, M., B. Prieto-Simon, and J.-L. Marty. 2007. Biosensors to detect marine toxins: Assessing seafood safety. Talanta 72 (3):884–95. doi:10.1016/j.talanta.2006.12.036
  • Campas, M., P. de la Iglesia, M. Le Berre, M. Kane, J. Diogene, and J.-L. Marty. 2008. Enzymatic recycling-based amperometric immunosensor for the ultrasensitive detection of okadaic acid in shellfish. Biosensors and Bioelectronics 24 (4):716–22. doi:10.1016/j.bios.2008.06.061
  • Cao, Y. Y., X. Sun, Y. M. Guo, W. P. Zhao, and X. Y. Wang. 2015. An electrochemical immunosensor based on interdigitated array microelectrode for the detection of chlorpyrifos. Bioprocess and Biosystems Engineering 38 (2):307–13. doi:10.1007/s00449-014-1269-3
  • Carvalhal, R. F., M. S. Kfouri, M. H. de Oliveira Piazetta, A. L. Gobbi, and L. T. Kubota. 2010. Electrochemical detection in a paper-based separation device. Analytical Chemistry 82 (3):1162–65. doi:10.1021/ac902647r
  • Castro Neto A. H., F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. 2009. The electronic properties of graphene. Reviews of Modern Physics 81 (1):109–62. doi:10.1103/RevModPhys.81.109
  • Centi, S., A. I. Stoica, S. Laschi, and M. Mascini. 2010. Development of an electrochemical immunoassay based on the use of an eight-electrodes screen-printed array coupled with magnetic beads for the detection of antimicrobial sulfonamides in honey. Electroanalysis 22 (16):1881–88. doi:10.1002/elan.200900618
  • Chen, J., J. H. Tang, F. Yan, and H. X. Ju. 2006. A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 27 (10):2313–21. doi:10.1016/j.biomaterials.2005.11.004
  • Chen, L. G., J. H. Jiang, G. L. Shen, and R. Q. Yu. 2015. A label-free electrochemical impedance immunosensor for the sensitive detection of aflatoxin B-1. Analytical Methods 7 (6):2354–59. doi:10.1039/C4AY01981D
  • Cheng, C. M., A. W. Martinez, J. L. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides. 2010. Paper-based ELISA. Angewandte Chemie International Edition 49 (28):4771–74. doi:10.1002/anie.201001005
  • Commission Regulation (EC). 2005. No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the European Union L 338:1
  • Commission Regulation (EC). 2006. No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union L 364:20–25.
  • Commission Regulation (EU). 2010. No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union L 15:1.
  • Conzuelo, F., M. Gamella, S. Campuzano, A. J. Reviejo, and J. M. Pingarron. 2012. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Analytica Chimica Acta 737:29–36. doi:10.1016/j.aca.2012.05.051
  • Cruz, A. F. D., N. Norena, A. Kaushik, and S. Bhansali. 2014. A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosensors and Bioelectronics 62:249–54. doi:10.1016/j.bios.2014.06.053
  • Darain, F., S. U. Park, and Y. B. Shim. 2003. Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode. Biosensors and Bioelectronics 18 (5–6):773–80. doi:10.1016/S0956-5663(03)00004-6
  • Dawan, S., R. Wannapob, P. Kanatharana, W. Limbut, A. Numnuam, S. Samanman, and P. Thavarungkul. 2013. One-step porous gold fabricated electrode for electrochemical impedance spectroscopy immunosensor detection. Electrochimica Acta 111:374–83. doi:10.1016/j.electacta.2013.08.012
  • Deep, A., S. K. Bhardwaj, A. K. Paul, K. H. Kim, and P. Kumar. 2015. Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosensors and Bioelectronics 65:226–31. doi:10.1016/j.bios.2014.10.045
  • Delibato, E., G. Volpe, D. Romanazzo, D. De Medici, L. Toti, D. Moscone, and G. Palleschi. 2009. Development and application of an electrochemical plate coupled with immunomagnetic beads (ELIME) array for Salmonella enterica detection in meat samples. Journal of Agricultural and Food Chemistry 57 (16):7200–04. doi:10.1021/jf901181 m
  • Di Pasquale S., and D. De Medici. 2015. Performance evaluation of an Italian reference method, the ISO reference method and a chromogenic rapid method for the detection of E. coli and coliforms in bottled water. Food Analytical Methods 8:2417–26. doi:10.1007/s12161-015-0154-2
  • Dominguez Renedo, O., M. A. Alonso-Lomillo, and M. J. Arcos Martinez. 2007. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73 (2):202–19. doi:10.1016/j.talanta.2007.03.050
  • Dong, H., C.-M. Li, Y.-F. Zhang, X.-D. Cao, and Y. Gan. 2007. Screen-printed microfluidic device for electrochemical immunoassay. Lab on a Chip 7 (12):1752–58. doi:10.1039/b712394a
  • Dossi, N., R. Toniolo, A. Pizzariello, F. Impellizzieri, E. Piccin, and G. Bontempelli. 2013. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 34 (14):2085–91. doi:10.1002/elps.201200425
  • Du, D., J. Wang, L. Wang, D. Lu, and Y. Lin. 2012. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase: Biomarker of exposure to organophosphorus agents. Analytical Chemistry 84 (3):1380–85. doi:10.1021/ac202391w
  • Dungchai, W., O. Chailapakul, and C. S. Henry. 2009. Electrochemical detection for paper-based microfluidics. Analytical Chemistry 81 (14):5821–26. doi:10.1021/ac9007573
  • Eissa, S., and M. Zourob. 2012. A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish. Nanoscale 4 (23):7593–99. doi:10.1039/c2nr32146 g
  • Engvall, E. 1980. Enzyme immunoassay ELISA and EMIT. Methods in Enzymology 70:419–39. doi:10.1016/s0076-6879(80)70067-8
  • Engvall, E., and P. Perlmann. 1971. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin-G. Immunochemistry 8 (9):871–74. doi:10.1016/0019-2791(71)90454-x
  • Engvall, E., and P. Perlmann. 1972. Enzyme-linked immunosorbent assay, ELISA. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. Journal of Immunology 109 (1):129.
  • Erickson, D., D. O’Dell, L. Jiang, V. Oncescu, A. Gumus, S. Lee, M. Mancuso, and S. Mehta. 2014. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab on a Chip 14 (17):3159–64. doi:10.1039/C4LC00142 G
  • Escamilla-Gomez, V., S. Campuzano, M. Pedrero, and J. M. Pingarron. 2008. Electrochemical immunosensor designs for the determination of Staphylococcus aureus using 3,3-dithiodipropionic acid di(N-succinimidyl ester)-modified gold electrodes. Talanta 77 (2):876–81. doi:10.1016/j.talanta.2008.07.045
  • Escarpa, A. 2014. Lights and shadows on food microfluidics. Lab on a Chip 14 (17):3213–24. doi:10.1039/C4LC00172A
  • Esteban-Fernandez de Avila B., M. Pedrero, S. Campuzano, V. Escamilla-Gomez, and J. M. Pingarron. 2012. Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Analytical and Bioanalytical Chemistry 403 (4):917–25. doi:10.1007/s00216-012-5738-8
  • Farre, M., and D. Barcelo. 2013. Analysis of emerging contaminants in food. TrAC-Trends in Analytical Chemistry 43:240–53. doi:10.1016/j.trac.2012.12.003
  • Fei, J. F., W. C. Dou, and G. Y. Zhao. 2015. A sandwich electrochemical immunoassay for Salmonella pullorum and Salmonella gallinarum based on a AuNPs/SiO2/Fe3O4 adsorbing antibody and 4 channel screen printed carbon electrode electrodeposited gold nanoparticles. RSC Advances 5 (91):74548–56. doi:10.1039/C5RA12491C
  • Feng, K., Y. Kang, J.-J. Zhao, Y.-L. Liu, J.-H. Jiang, G.-L. Shen, and R.-Q. Yu. 2008. Electrochemical immunosensor with aptamer-based enzymatic amplification. Analytical Biochemistry 378 (1):38–42. doi:10.1016/j.ab.2008.03.047
  • Fernandez-Baldo, M. A., F. A. Bertolino, G. A. Messina, M. I. Sanz, and J. Raba. 2010. Modified magnetic nanoparticles in an electrochemical method for the ochratoxin A determination in Vitis vinifera red grapes tissues. Talanta 83 (2):651–57. doi:10.1016/j.talanta.2010.10.018
  • Fragoso, A., N. Laboria, D. Latta, and C. K. O’Sullivan. 2008. Electron permeable self-assembled monolayers of dithiolated aromatic scaffolds on gold for biosensor applications. Analytical Chemistry 80 (7):2556–63. doi:10.1021/ac702195v
  • Gao, X., W. Y. Cao, M. M. Chen, H. Y. Xiong, X. H. Zhang, and S. F. Wang. 2014. A high sensitivity electrochemical sensor based on Fe3+-ion molecularly imprinted film for the detection of T-2 toxin. Electroanalysis 26 (12):2739–46. doi:10.1002/elan.201400237
  • Ge, X., A. M. Asiri, D. Du, W. Wen, S. Wang, and Y. Lin. 2014. Nanomaterial-enhanced paper-based biosensors. TrAC-Trends in Analytical Chemistry 58:31–39. doi:10.1016/j.trac.2014.03.008
  • Gubala, V., R. Klein, D. M. Templeton, and M. Schwenk. 2014. Immunodiagnostics and immunosensor design. Pure Applied Chemistry 86 (10):1539–71. doi:10.1515/pac-2013-1027
  • Guo, Y., X. F. Liu, X. Sun, Y. Y. Cao, and X. Y. Wang. 2015. A PDMS microfluidic impedance immunosensor for sensitive detection of pesticide residues in vegetable real samples. International Journal of Electrochemical Science 10 (5):4155–64.
  • Guo, Y., Y. Wang, S. Liu, J. Yu, H. Wang, M. Cui, and J. Huang. 2015. Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157: H7 with signal amplification on a SG–PEDOT–AuNPs electrode interface. Analyst 140 (2):551–59. doi:10.1039/C4AN01463D
  • Gupta, P. K. 2004. Pesticide exposure – Indian scene. Toxicology 198 (1–3):83–90. doi:10.1016/j.tox.2004.01.021
  • Hart, J. P., A. Crew, E. Crouch, K. C. Honeychurch, and R. M. Pemberton. 2004. Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Analytical Letters 37 (5):789–830. doi:10.1081/AL-120030682
  • Hayat, A., L. Barthelmebs, and J.-L. Marty. 2011. Enzyme-linked immunosensor based on super paramagnetic nanobeads for easy and rapid detection of okadaic acid. Analytica Chimica Acta 690 (2):248–52. doi:10.1016/j.aca.2011.02.031
  • Hayat, A., L. Barthelmebs, and J.-L. Marty. 2012. Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sensors and Actuators B: Chemical 171–172:810–15. doi:10.1016/j.snb.2012.05.075
  • He, P., Z. Wang, L. Zhang, and W. Yang. 2009. Development of a label-free electrochemical immunosensor based on carbon nanotube for rapid determination of clenbuterol. Food Chemistry 112 (3):707–14. doi:10.1016/j.foodchem.2008.05.116
  • Henares, T. G., F. Mizutani, and H. Hisamoto. 2008. Current development in microfluidic immunosensing chip. Analytica Chimica Acta 611 (1):17–30. doi:10.1016/j.aca.2008.01.064
  • Hervás, M., M. Á. López, and A. Escarpa. 2009. Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Analyst 134 (12):2405–11. doi:10.1039/b911839j
  • Hervás, M., M. A. Lopez, and A. Escarpa. 2010. Simplified calibration and analysis on screen-printed disposable platforms for electrochemical magnetic bead-based inmunosensing of zearalenone in baby food samples. Biosensors and Bioelectronics 25 (7):1755–60. doi:10.1016/j.bios.2009.12.031
  • Hervás, M., M. A. Lopez, and A. Escarpa. 2011. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136 (10):2131–38. doi:10.1039/c1an15081b
  • Huang, K.-J., D.-J. Niu, W.-Z. Xie, and W. Wang. 2010. A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode. Analytica Chimica Acta 659 (1–2):102–08. doi:10.1016/j.aca.2009.11.023
  • Huet, A.-C., T. Fodey, S. A. Haughey, S. Weigel, C. Elliott, and P. Delahaut. 2010. Advances in biosensor-based analysis for antimicrobial residues in foods. Trac-Trends in Analytical Chemistry 29 (11):1281–94. doi:10.1016/j.trac.2010.07.017
  • Humphrey, T. 2004. Science and society – Salmonella, stress responses and food safety. Nature Reviews Microbiology 2 (6):504–09. doi:10.1038/nrmicro907
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354 (6348):56–58. doi:10.1038/354056a0
  • Jayasena, S. D. 1999. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry 45 (9):1628–50.
  • Jin, W.-J., G.-J. Yang, H.-X. Shao, and A.-J. Qin. 2013. A novel label-free impedimetric immunosensor for detection of semicarbazide residue based on gold nanoparticles-functional chitosan composite membrane. Sensors and Actuators B: Chemical 188:271–79. doi:10.1016/j.snb.2013.07.031
  • Jin, W.-J., G.-J. Yang, H. X. Shao, and A. J. Qin. 2014. A label-free impedimetric immunosensor for detection of 1-aminohydantoin residue in food samples based on sol-gel embedding antibody. Food Control 39:185–91. doi:10.1016/j.foodcont.2013.11.001
  • Jin, W.-J., G.-J. Yang, L. Wu, Q. Wang, H. Shao, A. Qin, B. Yu, D. Li, and B. Cai. 2011. Detecting 5-morpholino-3-amino-2-oxazolidone residue in food with label-free electrochemical impedimetric immunosensor. Food Control 22 (10):1609–16. doi:10.1016/j.foodcont.2011.03.017
  • Jodra, A., M. Hervas, M. A. Lopez, and A. Escarpa. 2015. Disposable electrochemical magneto immunosensor for simultaneous simplified calibration and determination of ochratoxin A in coffee samples. Sensors and Actuators B: Chemical 221:777–83. doi:10.1016/j.snb.2015.07.007
  • Jodra, A., M. Á. López, and A. Escarpa. 2015. Disposable and reliable electrochemical magnetoimmunosensor for fumonisins simplified determination in maize-based foodstuffs. Biosensors and Bioelectronics 64:633–38. doi:10.1016/j.bios.2014.09.054
  • Joung, C.-K., H.-N. Kim, M.-C. Lim, T.-J. Jeon, H.-Y. Kim, and Y.-R. Kim. 2013. A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosensors and Bioelectronics 44:210–15. doi:10.1016/j.bios.2013.01.024
  • Kadir, M. K. A., and I. E. Tothill. 2010. Development of an electrochemical immunosensor for fumonisins detection in foods. Toxins (Basel) 2 (4):382–98. doi:10.3390/toxins2040382
  • Kamel, F., and J. A. Hoppin. 2004. Association of pesticide exposure with neurologic dysfunction and disease. Environmental Health Perspectives 112 (9):950–58. doi:10.1289/ehp.7135
  • Katz, E., I. Willner, and J. Wang. 2004. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16 (12):19–44. doi:10.1002/elan.200302930
  • Kim, Y. J., Y. S. Kim, J. H. Niazi, and M. B. Gu. 2010. Electrochemical aptasensor for tetracycline detection. Bioprocess and Biosystems Engineering 33 (1):31–37. doi:10.1007/s00449-009-0371-4
  • Knupfer, M. 2001. Electronic properties of carbon nanostructures. Surface Science Reports 42 (1–2):1–74. doi:10.1016/S0167-5729(00)00012-1
  • Kolosova, A. Y., W. B. Shim, Z. Y. Yang, S. A. Eremin, and D. H. Chung. 2006. Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B-1. Stabilization of ELISA kit components and application to grain samples. Analytical and Bioanalytical Chemistry 384 (1):286–94. doi:10.1007/s00216-005-0103-9
  • Konietzny, U., and R. Greiner. 2003. The application of PCR in the detection of mycotoxigenic fungi in foods. Brazilian Journal of Microbiology 34 (4):283–300. doi:10.1590/S1517-83822003000400001
  • Kumar, A. A., J. W. Hennek, B. S. Smith, S. Kumar, P. Beattie, S. Jain, J. P. Rolland, T. P. Stossel, C. Chunda-Liyoka, and G. M. Whitesides. 2015. From the bench to the field in low-cost diagnostics: Two case studies. Angewandte Chemie International Edition 54 (20):5836–53. doi:10.1002/anie.201411741
  • Kuramitz, H. 2009. Magnetic microbead-based electrochemical immunoassays. Analytical and Bioanalytical Chemistry 394 (1):61–69. doi:10.1007/s00216-009-2650-y
  • Labroo, P., and Y. Cui. 2014. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. Analytica Chimica Acta 813:90–96. doi:10.1016/j.aca.2014.01.024
  • Laczka, O., J. M. Maesa, N. Godino, J. del Campo, M. Fougt-Hansen, J. P. Kutter, D. Snakenborg, F. X. Munoz-Pascual, and E. Baldrich. 2011. Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosensors and Bioelectronics 26 (8):3633–40. doi:10.1016/j.bios.2011.02.019
  • Lee, Y.-E. K., and R. Kopelman. 2009. Optical nanoparticle sensors for quantitative intracellular imaging. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 1 (1):98–110. doi:10.1002/wnan.2
  • Lequin, R. M. 2005. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry 51 (12):2415–18. doi:10.1373/clinchem.2005.051532
  • Li, W., L. Li, S. Ge, X. Song, L. Ge, M. Yan, and J. Yu. 2014. Multiplex electrochemical origami immunodevice based on cuboid silver-paper electrode and metal ions tagged nanoporous silver-chitosan. Biosensors and Bioelectronics 56:167–73. doi:10.1016/j.bios.2014.01.011
  • Li, Y., P. Cheng, J. Gong, L. Fang, J. Deng, W. Liang, and J. Zheng. 2012. Amperometric immunosensor for the detection of Escherichia coli O157: H7 in food specimens. Analytical Biochemistry 421 (1):227–33. doi:10.1016/j.ab.2011.10.049
  • Li, Z. M., Y. C. Fu, W. H. Fang, and Y. B. Li. 2015. Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157: H7 with signal amplification using lectin. Sensors 15 (8):19212–24. doi:10.3390/s150819212
  • Liebana, S., A. Lermo, S. Campoy, M. Pilar Cortes, S. Alegret, and M. Isabel Pividori. 2009. Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosensors and Bioelectronics 25 (2):510–13. doi:10.1016/j.bios.2009.07.022
  • Lillehoj, P. B., M.-C. Huang, N. Truong, and C.-M. Ho. 2013. Rapid electrochemical detection on a mobile phone. Lab on a Chip 13 (15):2950–55. doi:10.1039/c3lc50306b
  • Lin, Y. X., Q. Zhou, Y. P. Lin, M. H. Lu, and D. P. Tang. 2015. Mesoporous carbon-enriched palladium nanostructures with redox activity for enzyme-free electrochemical immunoassay of brevetoxin B. Analytica Chimica Acta 887:67–74. doi:10.1016/j.aca.2015.06.010
  • Linting, Z., L. Ruiyi, L. Zaijun, X. Qianfang, F. Yinjun, and L. Junkang. 2012. An immunosensor for ultrasensitive detection of aflatoxin B-1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors and Actuators B: Chemical 174:359–65. doi:10.1016/j.snb.2012.06.051
  • Liu, B., B. Zhang, Y. Cui, H. Chen, Z. Gao, and D. Tang. 2011. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Applied Materials & Interfaces 3 (12):4668–76. doi:10.1021/am201087r
  • Liu, B., D. Tang, B. Zhang, X. Que, H. Yang, and G. Chen. 2013. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosensors and Bioelectronics 41:551–56. doi:10.1016/j.bios.2012.09.021
  • Liu, L., D. Xu, Y. Y. Hu, S. Z. Liu, H. L. Wei, J. G. Zheng, G. X. Wang, X. Y. Hu, and C. Y. Wang. 2015. Construction of an impedimetric immunosensor for label-free detecting carbofuran residual in agricultural and environmental samples. Food Control 53:72–80. doi:10.1016/j.foodcont.2015.01.009
  • Liu, X., W. J. Li, L. Li, Y. Yang, L. G. Mao, and Z. Peng. 2014. A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors and Actuators B: Chemical 191:408–14. doi:10.1016/j.snb.2013.10.033
  • Loncaric, C., Y. T. Tang, C. Ho, M. A. Parameswaran, and H. Z. Yu. 2012. A USB-based electrochemical biosensor prototype for point-of-care diagnosis. Sensors and Actuators B: Chemical 161 (1):908–13. doi:10.1016/j.snb.2011.11.061
  • Lopes, R. P., E. E. de Freitas Passos, J. F. de Alkimim Filho, E. A. Vargas, D. V. Augusti, and R. Augusti. 2012. Development and validation of a method for the determination of sulfonamides in animal feed by modified QuEChERS and LC-MS/MS analysis. Food Control 28 (1):192–98. doi:10.1016/j.foodcont.2012.04.026
  • Luo, X., A. Morrin, A. J. Killard, and M. R. Smyth. 2006. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 18 (4):319–26. doi:10.1002/elan.200503415
  • Luzi, E., M. Minunni, S. Tombelli, and M. Mascini. 2003. New trends in affinity sensing: Aptamers for ligand binding. TrAC-Trends in Analytical Chemistry 22 (11):810–18. doi:10.1016/s0165-9936(03)01208-1
  • Malhotra, B. D., A. Chaubey, and S. P. Singh. 2006. Prospects of conducting polymers in biosensors. Analytica Chimica Acta 578 (1):59–74. doi:10.1016/j.aca.2006.04.055
  • Mandler, D., and S. Kraus-Ophir. 2011. Self-assembled monolayers(SAMs) for electrochemical sensing. Journal of Solid State Electrochemistry 15 (7–8):1535–58. doi:10.1007/s10008-011-1493-6
  • Marino, M., F. Frigo, I. Bartolomeoli, and M. Maifreni. 2011. Safety-related properties of staphylococci isolated from food and food environments. Journal of Applied Microbiology 110 (2):550–61. doi:10.1111/j.1365-2672.2010.04909.x
  • Martinez, A. W., S. T. Phillips, G. M. Whitesides, and E. Carrilho. 2009. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Analytical Chemistry 82 (1):3–10. doi:10.1021/ac9013989
  • Martinez, A. W., S. T. Phillips, M. J. Butte, and G. M. Whitesides. 2007. Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angewandte Chemie International Edition 46 (8):1318–20. doi:10.1002/anie.200603817
  • McDuffie, H. H., P. Pahwa, J. R. McLaughlin, J. J. Spinelli, S. Fincham, J. A. Dosman, D. Robson, L. F. Skinnider, and N. W. Choi. 2001. Non-Hodgkin’s lymphoma and specific pesticide exposures in men: Cross-Canada study of pesticides and health. Cancer Epidemiology Biomarkers & Prevention 10 (11):1155–63.
  • McGrath, T. F., C. T. Elliott, and T. L. Fodey. 2012. Biosensors for the analysis of microbiological and chemical contaminants in food. Analytical and Bioanalytical Chemistry 403 (1):75–92. doi:10.1007/s00216-011-5685-9
  • Mello, L. D., and L. T. Kubota. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry 77 (2):237–56. doi:10.1016/S0308-8146(02)00104-8
  • Mena, M. L., P. Yáñez-Sedeño, and J. M. Pingarrón. 2005. A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Analytical Biochemistry 336 (1):20–27. doi:10.1016/j.ab.2004.07.038
  • Michino, H., K. Araki, S. Minami, S. Takaya, N. Sakai, M. Miyazaki, A. Ono, and H. Yanagawa. 1999. Massive outbreak of Escherichia coli O157: H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. American Journal of Epidemiology 150 (8):787–96. doi:10.1093/oxfordjournals.aje.a010082
  • Neagu, D., S. Perrino, L. Micheli, G. Palleschi, and D. Moscone. 2009. Aflatoxin M-1 determination and stability study in milk samples using a screen-printed 96-well electrochemical microplate. International Dairy Journal 19 (12):753–58. doi:10.1016/j.idairyj.2009.06.004
  • Nguyen, B. H., L. D. Tran, Q. P. Do, H. L. Nguyen, N. H. Tran, and P. X. Nguyen. 2013. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Materials Science and Engineering C 33 (4):2229–34. doi:10.1016/j.msec.2013.01.044
  • Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science 306 (5696):666–69. doi:10.1126/science.1102896
  • Pacheco, J. G., M. Castro, S. Machado, M. F. Barroso, H. P. A. Nouws, and C. Delerue-Matos. 2015. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors and Actuators B: Chemical 215:107–12. doi:10.1016/j.snb.2015.03.046
  • Palchetti, I., and M. Mascini. 2008. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Analytical and Bioanalytical Chemistry 391 (2):455–71. doi:10.1007/s00216-008-1876-4
  • Paniel, N., A. Radoi, and J.-L. Marty. 2010. Development of an electrochemical biosensor for the detection of aflatoxin M-1 in milk. Sensors 10 (10):9439–48. doi:10.3390/s101009439
  • Panini, N. V., F. A. Bertolino, E. Salinas, G. A. Messina, and J. Raba. 2010. Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems. Biochemical Engineering Journal 51 (1–2):7–13. doi:10.1016/j.bej.2010.04.005
  • Parker, C. O., and I. E. Tothill. 2009. Development of an electrochemical immunosensor for aflatoxin M-1 in milk with focus on matrix interference. Biosensors and Bioelectronics 24 (8):2452–57. doi:10.1016/j.bios.2008.12.021
  • Patel, P. D. 2002. (Bio)sensors for measurement of analytes implicated in food safety: A review. TrAC-Trends in Analytical Chemistry 21 (2):96–115. doi:10.1016/S0165-9936(01)00136-4
  • Piermarini, S., G. Volpe, L. Micheli, D. Moscone, and G. Palleschi. 2009. An ELIME-array for detection of aflatoxin B(1) in corn samples. Food Control 20 (4):371–75. doi:10.1016/j.foodcont.2008.06.003
  • Pimenta-Martins, M. G. R., R. F. Furtado, L. G. D. Heneine, R. S. Dias, M. D. F. Borges, and C. R. Alves. 2012. Development of an amperometric immunosensor for detection of staphylococcal enterotoxin type A in cheese. Journal of Microbiological Methods 91 (1):138–43. doi:10.1016/j.mimet.2012.05.016
  • Pingarrón, J. M., P. Yáñez-Sedeño, and A. González-Cortés. 2008. Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta 53 (19):5848–66. doi:10.1016/j.electacta.2008.03.005
  • Prodromidis, M. I. 2010. Impedimetric immunosensors: A review. Electrochimica Acta 55 (14):4227–33. doi:10.1016/j.electacta.2009.01.081
  • Pundir, C. S., and N. Chauhan. 2012. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Analytical Biochemistry 429 (1):19–31. doi:10.1016/j.ab.2012.06.025
  • Qin, X. L., Y. Yin, H. J. Yu, W. J. Guo, and M. S. Pei. 2016. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosensors and Bioelectronics 77:752–58. doi:10.1016/j.bios.2015.10.050
  • Radi, A.-E., X. Munoz-Berbel, M. Cortina-Puig, and J.-L. Marty. 2009. An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochimica Acta 54 (8):2180–84. doi:10.1016/j.electacta.2008.10.013
  • Rahman, M. A., P. Kumar, D.-S. Park, and Y.-B. Shim. 2008. Electrochemical sensors based on organic conjugated polymers. Sensors 8 (1):118–41. doi:10.3390/s8010118
  • Ramon-Azcon, J., E. Valera, A. Rodriguez, A. Barranco, B. Alfaro, F. Sanchez-Baeza, and M.-P. Marco. 2008. An impedimetric immunosensor based on interdigitated microelectrodes(ID mu E) for the determination of atrazine residues in food samples. Biosensors and Bioelectronics 23 (9):1367–73. doi:10.1016/j.bios.2007.12.010
  • Rangel, J. M., P. H. Sparling, C. Crowe, P. M. Griffin, and D. L. Swerdlow. 2005. Epidemiology of Escherichia coli O157: H7 outbreaks, United States, 1982–2002. Emerging Infectious Diseases 11 (4):603–09. doi:10.3201/eid1104.040739
  • Rasooly, A., and K. E. Herold. 2006. Biosensors for the analysis of food- and waterborne pathogens and their toxins. Journal of AOAC International 89 (3):873–83.
  • Regulation (EC). 2004. No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Official Journal of the European Union L 226:22.
  • Regulation (EC). 2005. No 396/2005 of the European Parliament of the Council of 23 Febrary 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Official Journal of the European Union L 70:1
  • Rhouati, A., C. Yang, A. Hayat, and J.-L. Marty. 2013. Aptamers: A promising tool for ochratoxin A detection in food analysis. Toxins (Basel) 5 (11):1988–2008. doi:10.3390/toxins5111988
  • Ricci, F., G. Adornetto, and G. Palleschi. 2012. A review of experimental aspects of electrochemical immunosensors. Electrochimica Acta 84:74–83. doi:10.1016/j.electacta.2012.06.033
  • Ricci, F., G. Volpe, L. Micheli, and G. Palleschi. 2007. A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta 605 (2):111–29. doi:10.1016/j.aca.2007.10.046
  • Romanazzo, D., F. Ricci, G. Volpe, C. T. Elliott, S. Vesco, K. Kroeger, D. Moscone, J. Stroka, H. Van Egmond, M. Vehniainen, and G. Palleschi. 2010. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosensors and Bioelectronics 25 (12):2615–21. doi:10.1016/j.bios.2010.04.029
  • Rosales-Rivera, L. C., J. L. Acero-Sanchez, P. Lozano-Sanchez, I. Katakis, and C. K. O’Sullivan. 2011. Electrochemical immunosensor detection of antigliadin antibodies from real human serum. Biosensors and Bioelectronics 26 (11):4471–76. doi:10.1016/j.bios.2011.05.004
  • Ruiyi, L., X. Qianfang, L. Zaijun, S. Xiulan, and L. Junkang. 2013. Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosensors and Bioelectronics 44:235–40. doi:10.1016/j.bios.2013.01.007
  • Rusling, J. F. 2012. Nanomaterials-based electrochemical immunosensors for proteins. The Chemical Record 12 (1):164–76. doi:10.1002/tcr.201100034
  • Sajid, M., A. N. Kawde, and M. Daud. 2015. Designs, formats and applications of lateral flow assay: A literature review. Journal of Saudi Chemical Society 19 (6):689–705. doi:10.1016/j.jscs.2014.09.001
  • Salam, F., and I. E. Tothill. 2009. Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosensors and Bioelectronics 24 (8):2630–36. doi:10.1016/j.bios.2009.01.025
  • Samsonova, J. V., A. J. Douglas, K. M. Cooper, D. G. Kennedy, and C. T. Elliott. 2008. The identification of potential alternative biomarkers of nitrofurazone abuse in animal derived food products. Food and Chemical Toxicology 46 (5):1548–54. doi:10.1016/j.fct.2007.12.019
  • Scognamiglio, V., A. Antonacci, M. D. Lambreva, S. C. Litescu, and G. Rea. 2015. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors. Biosensors and Bioelectronics 74:1076–86. doi:10.1016/j.bios.2015.07.078
  • Shao, Y., J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin. 2010. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22 (10):1027–36. doi:10.1002/elan.200900571
  • Shi, Z. Y., Y. T. Zheng, H. B. Zhang, C. H. He, W. D. Wu, and H. B. Zhang. 2015. DNA electrochemical aptasensor for detecting fumonisins B-1 based on graphene and thionine nanocomposite. Electroanalysis 27 (5):1097–103. doi:10.1002/elan.201400504
  • Shi, Z. Z., Y. L. Tian, X. S. Wu, C. M. Li, and L. Yu. 2015. A one-piece lateral flow impedimetric test strip for label-free clenbuterol detection. Analytical Methods 7 (12):4957–64. doi:10.1039/C5AY00706B
  • Sobel, J., and J. Painter. 2005. Illnesses caused by marine toxins. Clinical Infectious Diseases 41 (9):1290–96. doi:10.1086/496926
  • Sun, X., S. Du, X. Wang, and B. Qi. 2012. A novel label-free impedance immunosensor based on sol-gel for determination of carbofuran. Sensor Letters 10 (1–2):330–34. doi:10.1166/sl.2012.1848
  • Sun, X., S. Du, X. Wang, W. Zhao, and Q. Li. 2011. A label-free electrochemical immunosensor for carbofuran detection based on a sol-gel entrapped antibody. Sensors 11 (12):9520–31. doi:10.3390/s111009520
  • Sun, X., Q. Li, and X. Wang. 2012. Amperometric immunosensor based on gold nanoparticles and saturated thiourea for carbofuran detection. IEEE Sensors Journal 12 (6):2071–76. doi:10.1109/jsen.2011.2182190
  • Sun, X., Y. Cao, Z. Gong, X. Wang, Y. Zhang, and J. Gao. 2012. An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors. 12 (12):17247–61. doi:10.3390/s121217247
  • Sunday, C. E., M. Masikini, L. Wilson, C. Rassie, T. Waryo, P. G. L. Baker, and E. I. Iwuoha. 2015. Application on gold nanoparticles-dotted 4-nitrophenylazo graphene in a label-free impedimetric deoxynivalenol immunosensor. Sensors 15 (2):3854–71. doi:10.3390/s150203854
  • Susmel, S., G. G. Guilbault, and C. K. O’Sullivan. 2003. Demonstration of labeless detection of food pathogens using electrochemical redox probe and screen printed gold electrodes. Biosensors and Bioelectronics 18 (7):881–89. doi:10.1016/S0956-5663(02)00214-2
  • Szilagyi, S., and B. de la Calle. 2006. Development and validation of an analytical method for the determination of semicarbazide in fresh egg and in egg powder based on the use of liquid chromatography tandem mass spectrometry. Analytica Chimica Acta 572 (1):113–20. doi:10.1016/j.aca.2006.05.012
  • Tang, D., J. Tang, B. Su, and G. Chen. 2010. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. Journal of Agricultural and Food Chemistry 58 (20):10824–30. doi:10.1021/jf102326 m
  • Tang, D., J. Tang, B. Su, and G. Chen. 2011. Gold nanoparticles-decorated amine-terminated poly(amidoamine) dendrimer for sensitive electrochemical immunoassay of brevetoxins in food samples. Biosensors and Bioelectronics 26 (5):2090–96. doi:10.1016/j.bios.2010.09.012
  • Tang, D., Z. Zhong, R. Niessner, and D. Knopp. 2009. Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B(1) in food. Analyst 134 (8):1554–60. doi:10.1039/b902401 h
  • Tarr, P. 1995. Escherichia coli O157-H7 - clinical, diagnostic, and epidemiologic aspects of human infection. Clinical Infectious Diseases 20 (1):1–10. doi:10.1093/clinids/20.1.1
  • Teles, F. R. R., and L. P. Fonseca. 2008. Applications of polymers for biomolecule immobilization in electrochemical biosensors. Materials Science and Engineering C 28 (8):1530–43. doi:10.1016/j.msec.2008.04.010
  • Terry, L. A., S. F. White, and L. J. Tigwell. 2005. The application of biosensors to fresh produce and the wider food industry. Journal of Agricultural and Food Chemistry 53 (5):1309–16. doi:10.1021/jf040319 t
  • Thévenot, D. R., K. Toth, R. A. Durst, and G. S. Wilson. 2001. Electrochemical biosensors: Recommended definitions and classification. Biosensors and Bioelectronics 16 (1–2):121–31. doi:10.1016/S0956-5663(01)00115-4
  • Tietjen, M., and D. Fung. 1995. Salmonellae and food safety. Critical Reviews in Microbiology 21 (1):53–83. doi:10.3109/10408419509113534
  • Tirado, M. C., R. Clarke, L. A. Jaykus, A. McQuatters-Gollop, and J. M. Franke. 2010. Climate change and food safety: A review. Food Research International 43 (7):1745–65. doi:10.1016/j.foodres.2010.07.003
  • Tudorache, M., and C. Bala. 2007. Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Analytical and Bioanalytical Chemistry 388 (3):565–78. doi:10.1007/s00216-007-1293-0
  • Turner, N. W., S. Subrahmanyam, and S. A. Piletsky. 2009. Analytical methods for determination of mycotoxins: A review. Analytica Chimica Acta 632 (2):168–80. doi:10.1016/j.aca.2008.11.010
  • Ueno, Y. 1985. The Toxicology of Mycotoxins. CRC Critical Reviews in Toxicology 14 (2):99–132. doi:10.3109/10408448509089851
  • Uzun, L., and A. P. F. Turner. 2016. Molecularly-imprinted polymer sensors: Realising their potential. Biosensors and Bioelectronics 76:131–44. doi:10.1016/j.bios.2015.07.013
  • Van Dolah F. M. 2000. Marine algal toxins: Origins, health effects, and their increased occurrence. Environmental Health Perspectives 108:133–41. doi:10.1289/ehp.00108s1133
  • Vericat, C., M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza. 2010. Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chemical Society Reviews 39 (5):1805. doi:10.1039/b907301a
  • Vidal, J. C., L. Bonel, P. Duato, and J. R. Castillo. 2011. Improved electrochemical competitive immunosensor for ochratoxin A with a biotinylated monoclonal antibody capture probe and colloidal gold nanostructuring. Analytical Methods 3 (4):977–84. doi:10.1039/c0ay00651c
  • Wang, D., W. C. Dou, G. Y. Zhao, and Y. Chen. 2014. Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum. Journal of Microbiological Methods 106:110–18. doi:10.1016/j.mimet.2014.08.016
  • Wang, D., W. Hu, Y. Xiong, Y. Xu, and C. M. Li. 2015. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B1. Biosensors and Bioelectronics 63:185–89. doi:10.1016/j.bios.2014.06.070
  • Wang, J. 2005. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis 17 (1):7–14. doi:10.1002/elan.200403113
  • Wang, P. P., L. Ge, M. Yan, X. R. Song, S. G. Ge, and J. H. Yu. 2012. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosensors and Bioelectronics 32 (1):238–43. doi:10.1016/j.bios.2011.12.021
  • Wang, Y., N. Liu, B. Ning, M. Liu, Z. Lv, Z. Sun, Y. Peng, C. Chen, J. Li, and Z. Gao. 2012. Simultaneous and rapid detection of six different mycotoxins using an immunochip. Biosensors and Bioelectronics 34 (1):44–50. doi:10.1016/j.bios.2011.12.057
  • Wang, Y. X., J. F. Ping, Z. Z. Ye, J. Wu, and Y. B. Ying. 2013. Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157: H7. Biosensors and Bioelectronics 49:492–98. doi:10.1016/j.bios.2013.05.061
  • Williams, R. C., S. Isaacs, M. L. Decou, E. A. Richardson, M. C. Buffett, R. W. Slinger, M. H. Brodsky, B. W. Ciebin, A. Ellis, and A. Hockin. 2000. Illness outbreak associated with Escherichia coli O157: H7 in Genoa salami. Canadian Medical Association Journal 162 (10):1409–13.
  • Woodruff, D. P. 2008. The interface structure of n-alkylthiolate self-assembled monolayers on coinage metal surfaces. Physical Chemistry Chemical Physics 10 (48):7211–21. doi:10.1039/b813948b
  • Wu, J., J. Tang, Z. Dai, F. Yan, H. Ju, and N. El Murr. 2006. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosensors and Bioelectronics 22 (1):102–08. doi:10.1016/j.bios.2005.12.008
  • Xiang, C. L., R. Li, B. Adhikari, Z. She, Y. X. Li, and H. B. Kraatz. 2015. Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film. Talanta 140:122–27. doi:10.1016/j.talanta.2015.03.033
  • Xu, M., R. H. Wang, and Y. B. Li. 2016. Rapid detection of Escherichia coli O157: H7 and Salmonella typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 148:200–08. doi:10.1016/j.talanta.2015.10.082
  • Yang, G.-J., J.-L. Huang, W.-J. Meng, M. Shen, and X.-A. Jiao. 2009. A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Analytica Chimica Acta 647 (2):159–66. doi:10.1016/j.aca.2009.06.008
  • Yang, G.-J, W. Jin, L. Wu, Q. Wang, H. Shao, A. Qin, B. Yu, D. Li, and B. Cai. 2011. Development of an impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food samples. Analytica Chimica Acta 706 (1):120–27. doi:10.1016/j.aca.2011.08.018
  • Yang, X., F. Wu, D. Z. Chen, and H. W. Lin. 2014. An electrochemical immunosensor for rapid determination of clenbuterol by using magnetic nanocomposites to modify screen printed carbon electrode based on competitive immunoassay mode. Sensors and Actuators B: Chemical 192:529–35. doi:10.1016/j.snb.2013.11.011
  • Yu, H., F. Yan, Z. Dai, and H. X. Ju. 2004. A disposable amperometric immunosensor for alpha-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode. Analytical Biochemistry 331 (1):98–105. doi:10.1016/S0003-2697(04)00294-5
  • Zhang, D., and Q. Liu. 2016. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors and Bioelectronics 75:273–84. doi:10.1016/j.bios.2015.08.037
  • Zhao, G., H. Wang, and G. Liu. 2015. Advances in biosensor-based instruments for pesticide residues rapid detection. International Journal of Electrochemical Science 10 (12):9790–807.
  • Zhao, Y., Q. Wei, C. Xu, H. Li, D. Wu, Y. Cai, K. Mao, Z. Cui, and B. Du. 2011. Label-free electrochemical immunosensor for sensitive detection of kanamycin. Sensors and Actuators B: Chemical 155 (2):618–25. doi:10.1016/j.snb.2011.01.019
  • Zhu, Y., Y. Cao, X. Sun, and X. Wang. 2013. Amperometric immunosensor for carbofuran detection based on MWCNTs/GS-PEI-Au and AuNPs-antibody conjugate. Sensors 13 (4):5286–301. doi:10.3390/s130405286
  • Zhuo, Y., R. Yuan, Y. Q. Chai, D. P. Tang, Y. Zhang, N. Wang, X. L. Li, and Q. Zhu. 2005. A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion-membrane-modified gold electrode for determination of alpha-1-fetoprotein. Electrochemistry Communications 7 (4):355–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.