220
Views
9
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Determination of Ascorbic Acid by a Composite-Modified Platinum Electrode

, &
Pages 806-818 | Received 17 Feb 2016, Accepted 09 Jun 2016, Published online: 12 Apr 2017

References

  • Ambrosi, A., A. Morrin, M. R. Smyth, and A. J. Killard. 2008. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Analytica Chimica Acta 609 (1):37–43. doi:10.1016/j.aca.2007.12.017
  • Bartlett, P. N., and E. N. K. Wallace. 2001. The oxidation of ascorbate at poly(aniline)–poly(vinylsulfonate) composite coated electrodes. Physical Chemistry Chemical Physics 3 (8):1491–96. doi:10.1039/b009377g
  • Bello, A., M. Giannetto, G. Mori, R. Seeber, F. Terzi, and C. Zanardi. 2007. Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sensors and Actuators B 121:430–35. doi:10.1016/j.snb.2006.04.066
  • Bobacka, J., A. Lewenstram, and A. Ivaska. 2000. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. Journal of Electroanalytical Chemistry 489 (1–2):17–27. doi:10.1016/s0022-0728(00)00206-0
  • Casella, I. G., and M. R. Guascito. 1997. Electrocatalysis of ascorbic acid on the glassy carbon electrode chemically modified with polyaniline films. Electroanalysis 9:1381–86. doi:10.1002/elan.1140091802
  • Cui, X., and D. C. Martin. 2003. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors and Actuators B 89 (1–2):92–102. doi:10.1016/s0925-4005(02)00448-3
  • Dobos, D. 1975. Electrochimical Data. Elsevier.
  • Dryhurst, G., K. M. Kadish, F. Scheller, and R. Renneberg. 1982. Biological electrochemistry. New York: Academic Press.
  • Edgerley, D. A. 1998. Techniques for improving the accuracy of calibration in the environmental laboratory. WTA −14th Annual Waste Testing & Quality Assurance Symposium, July 13–15, 1998, Arlington, VA.
  • Erdogdu, G., and A. E. Karagozler. 1997. Investigation and comparison of the electrochemical behavior of some organic and biological molecules at various conducting polymer electrodes. Talanta 44:2011–18. doi:10.1016/s0039-9140(96)02196-0
  • Hu, G., Y. Guo, Q. Xue, and S. Shao. 2010. A highly selective amperometric sensor for ascorbic acid based on mesopore-rich active carbon-modified pyrolytic graphite electrode. Electrochimica Acta 55 (8):2799–804. doi:10.1016/j.electacta.2009.12.050
  • Hu, I.-F., and T. Kuwana. 1986. Oxidative mechanism of ascorbic acid at glassy carbon electrodes. Analytical Chemistry 58 (14):3235–39. doi:10.1021/ac00127a069
  • Ivanov, S., V. Tasakova, and V. M. Mirsky. 2006. Conductometric transducing in electrocatalytical sensors: Detection of ascorbic acid. Electrochemistry Communications 8 (4):643–46. doi:10.1016/j.elecom.2006.02.006
  • Kalakodimi, R. P., and M. Nookala. 2002. Electrooxidation of ascorbic acid on a polyaniline-deposited nickel electrode: Surface modification of a non-platinum metal for an electrooxidative analysis. Analytical Chemistry 74 (21):5531–37. doi:10.1021/ac025938k
  • Karabinas, P., and D. Jannakoudakis. 1984. Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions. Journal of Electroanalytical Chemistry 160 (1–2):159–67. doi:10.1016/0368-1874(84)83264-5
  • Kilmartin, P. A., A. Martinez, and P. N. Bartlett. 2008. Polyaniline-based microelectrodes for sensing ascorbic acid in beverages. Current Applied Physics 8 (3–4):320–23. doi:10.1016/j.cap.2007.10.021
  • Kilmartin, P. A., H. L. Zou, and A. L. Waterhouse. 2001. A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics. Journal of Agricultural and Food Chemistry 49 (4):1957–65. doi:10.1021/jf001044u
  • Lin, K. C., Y. Huang, and S. M. Chen. 2014. Simultaneous determination of ascorbic acid, dopamine, uric acid and hydrogen peroxide based on co-immobilization of PEDOT and FAD using multi-walled carbon nanotubes. Analytical Methods 6:8321–27. doi:10.1039/c4ay01639d
  • Lin, K. C., T. H. Tsai, and S. M. Chen. 2010. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosensors and Bioelectronics 26:608–14. doi:10.1016/j.bios.2010.07.019
  • Macdonald, J. R. (Ed.). 1987. Impedance spectroscopy. New York: Wiley.
  • Malinauskas, A., R. Garjonyte, R. Mazeikiene, and I. Jureviciute. 2004. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: A review. Talanta 64 (1):121–29. doi:10.1016/j.talanta.2004.02.010
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7 (9):405–10. doi:10.1016/s1360-1385(02)02312-9
  • Mu, S., and J. Kan. 2002. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid. Synthetic Metals 132 (1):29–33. doi:10.1016/s0379-6779(02)00209-6
  • Nambir, S., and J. T. W. Yeow. 2011. Conductive polymer-based sensors for biomedical applications. Biosensors and Bioelectronics 26 (5):1825–32. doi:10.1016/j.bios.2010.09.046
  • Ngai, K. S., W. T. Tan, Z. Zainal, R. M. Zawawi, and M. Zidan. 2013. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. International Journal of Electrochemical Science 8:10557–67. doi:10.1166/sl.2011.1703
  • Oliveira, A. X., S. M. Silva, F. R. F. Leite, L. T. Kubota, F. S. Damos, and R. D. C. S. Luz. 2013. Highly sensitive and selective basal plane pyrolytic graphite electrode modified with 1,4-naphthoquinone/MWCNT for simultaneous determination of dopamine, ascorbate and urate. Electroanalysis 25:723–31. doi:10.1002/elan.201200515
  • Oukil, D., L. Makhloufi, and B. Saidani. 2007. Preparation of polypyrrole films containing ferrocyanide ions deposited onto thermally pre-treated and untreated iron substrate: Application in the electroanalytical determination of ascorbic acid. Sensors and Actuators B 123:1083–89. doi:10.1016/j.snb.2006.11.014
  • Pournaghi-Azar, M. H., and R. Ojani. 1995. Catalytic oxidation of ascorbic acid by some ferrocene derivative mediators at the glassy carbon electrode. Application to the voltammetric resolution of ascorbic acid and dopamine in the same sample. Talanta 42 (12):1839–48. doi:10.1016/0039-9140(95)01638-4
  • Ruiz, J. J., A. Aldaz, and M. Dominguez. 1977. Mechanism of L-ascorbic acid oxidation and dehydro-L-ascorbic acid reduction on a mercury electrode. I. Acid medium. Canadian Journal of Chemistry 55 (15):2799–805. doi:10.1139/v77-389
  • Ruiz, J. J., A. Aldaz, and M. Dominguez. 1978. Mechanism of L-ascorbic acid oxidation on a mercury electrode. II. Basic medium. Canadian Journal of Chemistry 56 (11):1533–37. doi:10.1139/v78-248
  • Sanchis, C., M. A. Ghanem, H. J. Salavagione, E. Morallón, and P. N. Bartlett. 2011. The oxidation of ascorbate at copolymeric sulfonated poly(aniline) coated on glassy carbon electrodes. Bioelectrochemistry 80 (2):105–13. doi:10.1016/j.bioelechem.2010.06.006
  • Satheesh Babu, T. G., P. V. Suneesh, T. Ramachandran, and B. Nair. 2010. Gold nanoparticles modified titania nanotube arrays for amperometric determination of ascorbic acid. Analytical Letters 43:2809–22. doi:10.1080/00032711003725615
  • Sekli-Belaidi, F., P. Temple-Boyer, and P. Gros. 2010. Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids. Journal of Electroanalytical Chemistry 647:159–68. doi:10.1016/j.jelechem.2010.06.007
  • Wantz, F., C. E. Banks, and R. G. Compton. 2005. Direct oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode: A comparison of the electroanalytical response with other carbon electrodes. Electroanalysis 17:1529–33. doi:10.1002/elan.200503259
  • Zhang, L. 2007. Electrochemical synthesis of self-doped polyaniline and its use to the electrooxidation of ascorbic acid. Journal of Solid State Electrochemistry 11 (3):365–71. doi:10.1007/s10008-006-0151-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.