88
Views
2
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Amperometric Determination of Maltol using a Cobalt Oxide-Assembled MCM-41 Composite-Modified Glassy Carbon Electrode

, , , , &
Pages 1435-1447 | Received 23 Jun 2016, Accepted 14 Aug 2016, Published online: 11 Jul 2017

References

  • Alonso, M. C. S., L. L. Zamora, and J. M. Calatayud. 2001. Determination of the flavor enhancer maltol through a FIA-direct chemiluminescence procedure. Analytica Chimica Acta 438 (1–2):157–63. doi:10.1016/s0003-2670(01)00916-3
  • Carland, M., K. J. Tan, J. M. White, J. Stephenson, V. Murray, W. A. Denny, and W. D. McFadyen. 2005. Syntheses, crystal structure and cytotoxicity of diamine platinum(II) complexes containing maltol. Journal of Inorganic Biochemistry 99 (8):1738–43. doi:10.1016/j.jinorgbio.2005.06.003
  • Chao, M., and X. Ma. 2014. Electrochemical determination of maltol in food products using a poly(L-tryptophan) modified glassy carbon electrode. Russian Journal of Electrochemistry 50 (11):1065–71. doi:10.1134/s1023193514050048
  • Chin, L. F., S. M. Kong, H. L. Seng, K. S. Khoo, R. Vikneswaran, S. G. Teoh, M. Ahmad, S. B. A. Khoo, M. J. Maah, and C. H. Ng. 2011. Synthesis, characterization and biological properties of cobalt(II) complexes of 1,10-phenanthroline and maltol. Journal of Inorganic Biochemistry 105 (3):339–47. doi:10.1016/j.jinorgbio.2010.11.018
  • Chruscinska, E., E. Garribba, G. Micera, and A. Panzanelli. 1999. L-mimosine, an amino acid with maltol-type binding properties toward copper(II), oxovanadium(IV) and other metal ions. Journal of Inorganic Biochemistry 75 (3):225–32. doi:10.1016/s0162-0134(99)80003-8
  • Dai, Z., G. Lu, J. Bao, X. Huang, and H. Ju. 2007a. Detection of NADH and ethanol at titanium containing MCM-41 with low overpotential. Electroanalysis 19 (15):1591–96. doi:10.1002/elan.200703888
  • Dai, Z. H., J. Ni, X. H. Huang, G. F. Lu, and J. C. Bao. 2007b. Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry 70 (2):250–56. doi:10.1016/j.bioelechem.2006.09.009
  • Di, J., S. Bi, and F. Zhang. 2004. Electrochemical determination of maltol in beverages with glassy carbon electrode and its silica sol-gel modified electrode. Talanta 63 (2):265–72. doi:10.1016/j.talanta.2003.10.022
  • Doemoetoer, O., S. Aicher, M. Schmidlehner, M. S. Novak, A. Roller, M. A. Jakupec, W. Kandioller, C. G. Hartinger, B. K. Keppler, and E. A. Enyedy. 2014. Antitumor pentamethylcyclopentadienyl rhodium complexes of maltol and allomaltol: Synthesis, solution speciation and bioactivity. Journal of Inorganic Biochemistry 134:57–65. doi:10.1016/j.jinorgbio.2014.01.020
  • Elhag, S., Z. H. Ibupoto, X. Liu, O. Nur, and M. Willander. 2014. Dopamine wide range detection sensor based on modified Co3O4 nanowires electrode. Sensors and Actuators B: Chemical 203:543–49. doi:10.1016/j.snb.2014.07.028
  • Ferreira, V., I. Jarauta, R. Lopez, and J. Cacho. 2003. Quantitative determination of sotolon, maltol and free furaneol in wine by solid-phase extraction and gas chromatography-ion-trap mass spectrometry. Journal of Chromatography A 1010 (1):95–103. doi:10.1016/s0021-9673(03)00963-4
  • Gan, T., Z. Lv, N. Liu, J. Sun, Z. Shi, and A. Zhao. 2016. Ultrasensitive electrochemical sensor for maltol in wines using graphene oxide-wrapped amino-functionalized carbon sphere as sensing electrode materials. Electroanalysis 28 (1):103–10. doi:10.1002/elan.201500476
  • Gralla, E. J., R. B. Stebbins, G. L. Coleman, and C. S. Delahunt. 1969. Toxicity studies with ethyl maltol. Toxicology and Applied Pharmacology 15 (3):604–13. doi:10.1016/0041-008X(69)90062-3
  • Han, Y., Q. Xu, J. N. Hu, X. Y. Han, W. Li, and L. C. Zhao. 2015. Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients 7 (1):682–96. doi:10.3390/nu7010682
  • Hasanzadeh, M., N. Shadjou, M. Eskandani, and M. D. L. Guardia. 2012. Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors. TrAC Trends in Analytical Chemistry 40:106–18. doi:10.1016/j.trac.2012.06.007
  • Hironishi, M., R. Kordek, R. Yanagihara, and R. M. Garruto. 1996. Maltol (3-hydroxy-2-methyl-4-pyrone) toxicity in neuroblastoma cell lines and primary murine fetal hippocampal neuronal cultures. Neurodegeneration 5 (4):325–29. doi:10.1006/neur.1996.0044
  • Hoffmann, F., M. Cornelius, J. Morell, and M. Froba. 2006. Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie International Edition 45 (20):3216–51. doi:10.1002/anie.200503075
  • Jiang, L., S. Gu, Y. Ding, D. Ye, Z. Zhang, and F. Zhang. 2013. Amperometric sensor based on tricobalt tetroxide nanoparticles-graphene nanocomposite film modified glassy carbon electrode for determination of tyrosine. Colloids and Surfaces B: Biointerfaces 107:146–51. doi:10.1016/j.colsurfb.2013.01.077
  • Kaneko, N., H. Yasui, J. Takada, K. Suzuki, and H. Sakurai. 2004. Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice. Journal of Inorganic Biochemistry 98 (12):2022–31. doi:10.1016/j.jinorgbio.2004.09.008
  • Kimura, T., and K. Kuroda. 2009. Ordered mesoporous silica derived from layered silicates. Advanced Functional Materials 19 (4):511–27. doi:10.1002/adfm.200800647
  • Kuila, T., S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee. 2011. Recent advances in graphene-based biosensors. Biosensors and Bioelectronics 26 (12):4637–48. doi:10.1016/j.bios.2011.05.039
  • Laviron, E. 1974. Surface linear potential sweep voltammetry: Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account. Journal of Electroanalytical Chemistry 52 (3):395–402. doi:10.1016/0368-1874(74)85054-9
  • Lu, J., S. Liu, S. Ge, M. Yan, J. Yu, and X. Hu. 2012. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosensors and Bioelectronics 33 (1):29–35. doi:10.1016/j.bios.2011.11.054
  • Ma, X., and M. Chao. 2013. Electrocatalytic determination of maltol in food products by cyclic voltammetry with a poly(l-phenylalanine) modified electrode. Analytical Methods 5 (20):5823–29. doi:10.1039/c3ay41142g
  • Ni, Y., Y. Wang, and S. Kokot. 2008. Simultaneous kinetic-spectrophotometric determination of maltol and ethyl maltol in food samples by using chemometrics. Food Chemistry 109 (2):431–38. doi:10.1016/j.foodchem.2007.12.036
  • Ni, Y., G. Zhang, and S. Kokot. 2005. Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks. Food Chemistry 89 (3):465–73. doi:10.1016/j.foodchem.2004.05.037
  • Noorbakhsh, A., M. M. Mirkalaei, M. H. Yousefi, and S. Manochehri. 2014. Electrodeposition of cobalt oxide nanostructure on the glassy carbon electrode for electrocatalytic determination of para-nitrophenol. Electroanalysis 26 (12):2716–26. doi:10.1002/elan.201400386
  • Portela, M. J., Z. G. D. Balugera, M. A. Goicolea, and R. J. Barrio. 1996. Electrochemical study of the flavour enhancer maltol. determination in foods by liquid chromatography with amperometric detection. Analytica Chimica Acta 327 (1):65–71. doi:10.1016/0003-2670(96)00066-9
  • Prasad, R., and B. R. Bhat. 2015. Self-assembly synthesis of Co3O4/multiwalled carbon nanotube composites: An efficient enzyme-free glucose sensor. New Journal of Chemistry 39:9735–42. doi:10.1039/c5nj01447f
  • Qin, J., B. Li, W. Zhang, W. Lv, C. Han, and J. Liu. 2015. Synthesis, characterization and catalytic performance of well-ordered mesoporous Ni-MCM-41 with high nickel content. Microporous and Mesoporous Materials 208:181–87. doi:10.1016/j.micromeso.2015.02.009
  • Rao, H., X. Wang, X. Du, and Z. Xue. 2013. Mini review: Electroanalytical sensors of mesoporous silica materials. Analytical Letters 46:2789–812. doi:10.1080/00032719.2013.816962
  • Risner, C. H., and M. J. Kiser. 2008. High-performance liquid chromatography procedure for the determination of flavor enhancers in consumer chocolate products and artificial flavors. Journal of the Science of Food and Agriculture 88 (8):1423–30. doi:10.1002/jsfa.3234
  • Siangproh, W., W. Dungchai, P. Rattanarat, and O. Chailapakul. 2011. Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: a review. Analytica Chimica Acta 690 (1):10–25. doi:10.1016/j.aca.2011.01.054
  • Thomas, T., R. J. Mascarenhas, P. Martis, Z. Mekhalif, and B. E. K. Swamy. 2015. Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid. Materials Science and Engineering: C 57 (6):328–37.
  • Wang, L., X. Liu, X. Wang, X. Yang, and L. Lu. 2010. Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. Current Applied Physics 10 (6):1422–26. doi:10.1016/j.cap.2010.05.007
  • Wu, S., H. Wang, S. Tao, C. Wang, L. Zhang, Z. Liu, and C. Meng. 2011. Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing. Analytica Chimica Acta 686 (1–2):81–86. doi:10.1016/j.aca.2010.11.053
  • Xue, Z., H. Hou, H. Rao, C. Hu, X. Zhou, X. Liu, and X. Lu. 2015a. A green approach for assembling graphene films on different carbon-based substrates and their electrocatalysis toward nitrite. Rsc Advances 5 (46):36707–14. doi:10.1039/c5ra02737c
  • Xue, Z., H. Lian, C. Hu, Y. Feng, F. Zhang, X. Liu, and X. Lu. 2014b. Electrochemical reduction and detection of nitrobenzene based on porphyrin composite-modified glassy carbon electrode. Australian Journal of Chemistry 67 (5):796–804. doi:10.1071/ch13607
  • Yang, R., D. Gao, H. Huang, B. Huang, and H. Cai. 2013. Mesoporous silicas prepared by ammonium perchlorate oxidation and theirs application in the selective adsorption of high explosives. Microporous and Mesoporous Materials 168:46–50. doi:10.1016/j.micromeso.2012.09.038
  • Yasumoto, E., K. Nakano, T. Nakayachi, S. R. M. Morshed, K. Hashimoto, H. Kikuchi, H. Nishikawa, M. Kawase, and H. Sakagami. 2004. Cytotoxic activity of deferiprone, maltol and related hydroxyketones against human tumor cell lines. Anticancer Research 24 (2B):755–62.
  • You, B., Z. Zhang, L. Zhang, J. Yang, X. Zhu, and Q. Su. 2012. A new restriction effect of aging time on the shrinkage of ordered mesoporous carbon during carbonization. RSC Advances 2 (12):5071–74. doi:10.1039/c2ra01243j
  • Yue, Q., M. Wang, J. Wei, Y. Deng, T. Liu, R. Che, B. Tu, and D. Zhao. 2012. A template carbonization strategy to synthesize ordered mesoporous silica microspheres with trapped sulfonated carbon nanoparticles for efficient catalysis. Angewandte Chemie International Edition 51 (41):10368–372. doi:10.1002/anie.201204719
  • Zhang, G., Y. Ma, L. Wang, Y. Zhang, and J. Zhou. 2012. Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin. Food Chemistry 133 (2):264–70. doi:10.1016/j.foodchem.2012.01.014
  • Zhang, L., W. J. Yuan, and B. Q. Hou. 2013. Nano-Cu/PSA III modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Journal of Electroanalytical Chemistry 689:135–41. doi:10.1016/j.jelechem.2012.11.006
  • Zhang, Z., C. Zhou, M. Jia, Y. Fu, J. Li, and Y. Lai. 2014. Synthesis of copper tin sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochimica Acta 143:305–11. doi:10.1016/j.electacta.2014.07.159
  • Zhou, J., K. Zhang, Y. Li, K. Li, and B. Ye. 2012. Study on the electrochemical properties of maltol at a carbon paste electrode and its analytical application. Analytical Methods 4 (10):3206–11. doi:10.1039/c2ay25514f
  • Zhou, X., J. Zhang, Q. Su, J. Shi, Y. Liu, and G. Du. 2014. Nanoleaf-on-sheet CuO/graphene composites: microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochimica Acta 125:615–21. doi:10.1016/j.electacta.2014.01.155

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.