919
Views
42
CrossRef citations to date
0
Altmetric
PHARMACEUTICAL ANALYSIS

Mini-review: Recent Advances in Electrochemical Determination of Sulfonamides

&
Pages 424-441 | Received 31 Dec 2016, Accepted 13 Feb 2017, Published online: 25 Oct 2017

References

  • Almeida, S. A., E. Arasa, M. Pyol, C. S. Martinez-Cisneros, J. Alonso-Chamarro, M. C. B. S. M. Montenegro, and M. G. F. Sales. 2011. Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: Application to sulfamethoxazole and trimethoprim. Biosensors and Bioelectronics 30:197–203. doi:10.1016/j.bios.2011.09.011
  • Amine, A., H. Mohammadi, I. Bourais, and G. Palleschi. 2006. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics 21:1405–23. doi:10.1016/j.bios.2005.07.012
  • Andrade, L. S., M. C. de Morales, R. C. Rocha-Filho, O. Fatibello-Filho, and Q. B. Cass. 2009. A multidimensional high performance liquid chromatography method coupled with amperometric detection using a boron-doped diamond electrode for the simultaneous determination of sulfamethoxazole and trimethoprim in bovin milk. Analytica Chimica Acta 654:127–32. doi:10.1016/j.aca.2009.09.035
  • Andrade, L. S., R. C. Rocha-Filho, Q. B. Cass, and O. Fatibello-Filho. 2009. Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a Boron-doped diamond electrode. Electroanalysis 21:1475–80. doi:10.1002/elan.200804551
  • Andrade, L. S., R. C. Rocha-Filho, Q. B. Cass, and O. Fatibello-Filho. 2010. A novel multicommunication stopped-flow system for the simultaneous determination of sulfamethoxazole and trimethoprim by differential pulse voltammetry on a boron-doped electrode. Analytical Methods 2:402–07. doi:10.1039/B9AY00092E
  • Annamalai, C., S. Radhakrishnan, R. Kunjithapatham, and S. Rathinavelu. 2011. Eelectrochemical behavior and square wave stripping voltammetric determination of antibacterial drug at ionic liquid modified carbon paste electrode. Journal of Analytical Techniques 2:9.
  • Arvand, M., and F. Alirezanejad. 2011. Sulfamethoxazole-imprinted polymeric receptor as ionophore for potentiometric transduction. Electroanalysis 23:1948–57. doi:10.1002/elan.201100217
  • Arvand, M., R. Ansari, and L. Heydari. 2011. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamthoxazole using carbon nanotube paste electrode. Materials Science and Engineering: C 31:1819–25. doi:10.1016/j.msec.2011.08.014
  • Baran, W., E. Adamek, J. Ziemiańska, and A. Sobczak. 2011. Effect of the presence of sulfonamides in the environment and their influence on human health. Journal of Hazardous Materials 196:1–15. doi:10.1016/j.jhazmat.2011.08.082
  • Boràs, S., R. Companyó, J. Guiteras, J. Bosch, M. Medina, and S. Termes. 2013. Multiclass method for antimicrobial analysis in animal feeds by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 405:8475–86. doi:10.1007/s00216-013-7268-4
  • Bourais, I., S. Maliki, H. Mohammadi, and A. Amine. 2017. Investigation of sulfonamides inhibition of carbonic anhydrase enzyme using multiphotometric and electrochemical techniques. Enzyme and Microbial Technology 96:23–29. doi:10.1016/j.enzmictec.2016.09.007
  • Bueno, A. M., A. M. Contento, and Á. Rios. 2013. Validation of a screening method for the rapid control of sulfonamide residues based on electrochemical detection using multiwalled carbon nanotubes-glassy carbon electrodes. Analytical Methods 5:6821–29. doi:10.1039/c3ay41437j
  • Bueno, A. M., A. M. Contento, and Á. Rios. 2014. Determination of sulfonamides in milk samples by HPLC with amperometric detection using a glassy carbon electrode modified with multiwalled carbon naotubes. Journal of Separation Science 37:382–89. doi:10.1002/jssc.201301011
  • Cai, M., L. Zhu, Y. Ding, J. Wang, J. Li, and X. Du. 2012. Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes. Materials Science and Engineering: C 32:2623–2627. doi:10.1016/j.msec.2012.08.017
  • Calaça, G. N., C. A. Pessoa, K. Wohnrath, and N. Nagata. 2014. Simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations by square wave voltammetry. International Journal of Pharmacy and Pharmaceutical Sciences 6:438–42.
  • Casella, I. G., M. Contursi, and D. Gioia. 2012. Development of a liquid chromatography/amperometric method for the determination of multiresidue sulfonamide antibiotics in meat-based baby foods. Electroanalysis 24:2125–33. doi:10.1002/elan.201200292
  • Cesarino, I., V. Cesarino, and M. R. V. Lanza. 2013. Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sensors and Actuators: B Chemical 188:1293–99. doi:10.1016/j.snb.2013.08.047
  • Chantada-Vázquez, M. P., J. Sánchez-González, E. M. J. Peña-Vázquez, A. M. Bermejo, P. Bermejo-Barrera, and A. Moreda-Piñeiro. 2016. Synthesis and characterization of novel molecularly imprinted polymer-coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosensors and Bioelectronics 75:213–21. doi:10.1016/j.bios.2015.08.022
  • Chasta, H., and R. N. Goyal. 2015. A simple and sensitive poly-1,5-Diaminonaphtalene modified sensor for determination of sulfamethoxazole in biological samples. Electroanalysis 27:1–10. doi:10.1002/elan.201400688
  • Chiavarino, B., M. E. Crestoni, A. Di Marzio, and S. Fornarini. 1998. Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. Journal of Chromatography B: Biomedical Sciences and Applications 706:269–77. doi:10.1016/s0378-4347(97)00568-9
  • Chu, Q., D. Zhang, J. Wang, and J. Ye. 2009. Multi-residue analysis of sulfonamides in animal tissues by capillary electrophoresis with electrochemical detection. Journal of the Science of Food and Agriculture 89:2498–504. doi:10.1002/jsfa.3756
  • Chung, H. H., J. B. Lee, Y. H. Chung, and K. G. Lee. 2009. Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography. Food Chemistry 113:297–301. doi:10.1016/j.foodchem.2008.07.021
  • Conzuelo, F., S. Camuzano, M. Gamella, D. G. Pinacho, A. J. Reviejo, M. P. Marco, and J. M. Pingarron. 2013. Integrated disposable electrochemical immunosesnors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosensors and Bioelectronics 50:100–105. doi:10.1016/j.bios.2013.06.019
  • Conzuelo, F., M. Gamella, S. Campuzano, D. G. Pinacho, A. J. Reviejo, M. P. Marco, and J. M. Pingarron. 2012. Disposable and integrated amperometric immunosensor for direct determination of sulfonamide antibiotics in milk. Biosensors and Bioelectronics 36:81–88. doi:10.1016/j.bios.2012.03.044
  • Cosofret, V. V., and R. P. Buck. 1993. Recent advances in pharmaceutical analysis with potentiometric membranes sensors. Critical Reviews in Analytical Chemistry 24:1–58. doi:10.1080/10408349308048818
  • Del Torno-de Román, L., M. A. Alonso-Lomillo, O. Dominiguez-Renedo, and M. J. Acros-Martinez. 2016. Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole. Sensors and Actuators B: Chemical 227:48–53. doi:10.1016/j.snb.2015.12.053
  • Dejmkova, H., M. Mikes, J. Barek, and J. Zima. 2013. Determination of sulfamethiazole using voltammetry and amperometry on carbon paste electrode. Electroanalysis 25:189–94. doi:10.1002/elan.201200354
  • Dimitrienko, S. G., E. V. Kochuk, V. V. Apyari, V. V. Tolmacheva, and Y. A. Zolotov. 2014. Recent advances in sample preparation techniques and methods of sulfonamides detection – A review. Analytica Chimica Acta 850:6–25. doi:10.01016/j.aca.2014.05.023
  • El Hassani, N. E. A., A. Baraket, E. T. T. Neto, M. Lee, J. P. Salvador, M. P. Marco, J. Baussels, N. El Bari, B. Bouchikhi, A. Elaissari, A. Errachid, and N. Zine. 2016. Novel strategy for sulfapyridine detection using a fully integrated electrochemical Bio-MEMS: Application to honey analysis. Biosensors and Bioelectronics 93:282–88. doi:10.1016/j.bios.2016.08.083
  • Fang, G. Z., J. X. He, and S. Wang. 2006. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. Journal of Chromatography A 1127:12–17. doi:10.1016/j.chroma.2006.06.024
  • Fotouhi, L., A. B. Hashkavayi, and M. M. Heravi. 2013. Electrochemical behavior and voltammetric determination of sulphadiazine using a multi-walled carbon nanotubes composite film-glassy carbon electrode. Journal of Experimental Nanoscience 8:947–56. doi:10.1080/17458080.2011.624554
  • Fotouhi, L., and M. Zabeti. 2014. Electrochemical oxidation of sumfamethazine on multi-walled carbon nanotubes film coated glassy carbon electrode. Journal of Nanostructures 4:161–66.
  • Fujishima, A. 2005. Diamond electrochemistry. Amsterdam, Netherland: Elsevier.
  • Gracía-Campaña, A. M., L. Gámiz-Gracia, F. J. Lara, M. del Olmo Iruela, and C. Cruces-Blanco. 2009. Applications of capplicary electrophoresis to the determination of antibiotics in food and environmental samples. Analytical and Bioanalytical Chemistry 395:967–86. doi:10.1007/s00216-009-2867-9
  • García-Galán, M. J., M. S. Díaz-Cruz, and D. Barceló. 2010. Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography–tandem mass spectrometry (SPE-LC–MS/MS). Talanta 81:355–366. doi:10.1016/j.talanta.2009.12.009
  • Ge, Y., and A. P. Turner. 2009. Molecularly imprinted sorbent assays: Recent developments and applications. Chemistry. A European Journal 15:8100–07. doi:10.1002/chem.200802401
  • Ghoreishi, S. M., M. Behpour, A. Khoobi, and Z. Moghadam. 2013. Determination of trace amounts of sulfamethiazole using a multi-walled carbon nanotube modified electrode: Application of experimental design in voltammetric studies. Analytical Letters 46:323–39. doi:10.1080/00032719.2012.718831
  • Granja, R. H. M. M., A. M. M. Niño, F. Rabone, and A. G. Salerno. 2008. A reliable high performance liquid chromatography with ultraviolet detection for the determination of sulfonamides in honey. Analytica Chimica Acta 613:116–19. doi:10.1016/j.aca.2008.02.048
  • Guo, B., L. Galvas, and A. C. Albertsson. 2013. Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science 38:1263–86. doi:10.1016/j.progpolymsci.2013.06.003
  • He, B., and W. Chen. 2015. Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethyformamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide. International Journal of Electrochemical Science 10:4335–45.
  • He, B. S., and W. B. Chen. 2016. Voltammetric determination of sulfonamides with a modified glassy carbon electrode using carboxyl multiwalled carbon nanotubes. Journal of Brazilian Chemical Society 27:2216–25. doi:10.5935/0103-50.53.20160114
  • Hong, X. P., and J. Y. Ma. 2013. Electrochemical study of sulfadiazine on a novel phtalocyanine-containing chemically modified electrode. Chinese Chemical Letters 21:329–31. doi:10.1016/j.cclet.013.02.010
  • Hong, X. P., Y. Zhu, and Y. Z. Zhang. 2012. Electrocatalytic response of poly (cobalt tetraaminophthalocyanine)/multiwalled carbon naotubes-Nafion modified electrode toward sulfadiazine in urine. Journal of Zhejiang University Science B 13:503–10. doi:10.1631/jzus.B1100337
  • Hruska, K., and M. Franek. 2012. Sulfonamides in the environment: A review and a case report. Veterinaria Medicina 57:1–35.
  • Joseph, R., and K. Girish Kumar. 2010. Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxyphenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Testing and Analysis 2:278–83. doi:10.1002/dta.129
  • Kalcher, K., J. M. Kauffmann, I. Svancara, K. Vytras, C. Neuhold, and Z. Yang. 1995. Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990-1993. Electroanalysis 7:5–55. doi:10.1002/elan.1140070103
  • Kamel, A. H., S. A. Almeida, M. G. F. Sales, and F. T. Moreira. 2009. Sulfadiazine-potentiometric sensors for flow and batch determinations of sulfadiazine in drugs and biological fluids. Analytical Sciences 25:365–71. doi:10.2116/analsci.25.365
  • Kharitonov, S. V., and I. P. Gorelov. 2000. Ion-selective electrodes for determination of some sulfanilamide drugs. Pharmaceutical Chemistry Journal 34:673–76.
  • Kotouček, M., J. Skopalová, and D. Michálková. 1997. Electroanalytical study of salazosulfapyridine and biseptol at the mercury electrode. Analytica Chimica Acta 353:61–69. doi:10.1016/S0003-2670(97)00381-4
  • Kowalski, P., A. Plenis, I. Oledzeka, and L. Konieczn. 2011. Optimization and validation of the micellar electrokinetic capillary chromatographic method for simultaneous determination of sulfonamide and aminophenol-type drugs in poultry tissue. Journal of Pharmaceutical and Biomedical Analysis 54:160–67. doi:10.1016/j.jpba.2010.08.005
  • Lahcen, A. A., A. A. Baleg, P. Baker, E. Iwuoha, and A. Amine. 2017. Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17- β-Estradiol determination. Sensors and Actuators B: Chemical 241:698–705. doi:10.1016/j.snb.2016.10.132
  • Lahcen, A. A., S. A. Errayess, and A. Amine. 2016. Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Microchimica Acta 183:2169–76. doi:10.1007/s00604-016-1850-3
  • Lara, F. J., A. M. García-Campaña, C. Neusüss, and F. Alés-Barrero. 2009. Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis. Journal of Chromatography A 1216:3372–3379. doi:10.1016/j.chroma.2009.01.097
  • Li, J., H. Liu, J. Zhang, Y. Liu, and L. Wu. 2016. A novelty strategy for the fast analysis of sulfonamide antibiotics in fish tissue using magnetic separation with high-performance liquid chromatography-tandem mass spectrometry. Biomedical Chromatography 30:1331–37. doi:10.1002/bmc.3693
  • Li, X., X. Wang, H. Duan, and C. Luo. 2015. Electrochemical sensor based on magnetic graphene oxide @gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate. Talanta 131:354–60. doi:10.1016/j.talanta.2014.07.028
  • Lima, D., L. C. Lopes, C. G. De Jesus, C. M. F. Calixto, G. N. Calaça, A. G. Viana, and C. A. Pessôa. 2016. Carbon paste electrodes modified with sulfated polysaccharide porphyran: Potential applications in the electroanalytical determination of sulfonamides. Revista Virtual de Quimica 8:1660–82. doi:10.21577/1984-6835.20160110
  • Lu, K. H., C. Y. Chen, and M. R. Lee. 2007. Trace determination of sulfonamides residues in meat with a combination of solid-phase microextraction and liquid chromatography–mass spectrometry. Talanta 72:1082–1087. doi:10.1016/j.talanta.2007.01.022
  • Malha, S. I. R., A. A. Lahcen, F. Arduini, A. Ourari, and A. Amine. 2016. Electrochemical characterization of carbon solid-like paste electrode assembled using different carbon nanoparticles. Electroanalysis 28:1044–51. doi:10.1002/elan.201500637
  • Mamani, M. C. V., F. G. R. Reyes, and S. Rath. 2009. Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chemistry 117:545–52. doi:10.1016/j.foodchem.2009.04.032
  • Mor, F., F. S. Kocasar, G. Ozdemir, and B. Oz. 2012. Determination of sulphonamide residues in cattle meats by the Charm-II system and validation with high performance liquid chromatography with fluorescence detection. Food Chemistry 134:1645–49. doi:10.1016/j.foodchem.2012.03.049
  • Msagati, T. A., and J. C. Ngila. 2002. Voltammetric detection of sulfonamides at a poly (3-methylthiophene) electrode. Talanta 58:605–10. doi:10.1016/S0039-9140(02)00327-2
  • Meshki, M., M. Behpour, and S. Masoum. 2015. Application of Fe doped ZnO nanorods-based modified sensor for determination of sulfamethoxazole and sulfamethiazole using chemometric methods in voltammetric studies. Journal of Electroanalytical Chemistry 740:1–7. doi:10.1016/j.jelechem.2014.12.008
  • Nagaraja, P., K. R. Sunitha, R. A. Vasantha, and H. S. Yathirajan. 2002. Iminodebenzyl coupling agent for the spectrophotometric determination of sulfonamide derivatives. European Journal of Pharmaceutics and Biopharmaceutics 53:187–92. doi:10.1016/S0939-6411(01)00235-1
  • Ozkorucuklo, S. P., L. Ozcan, Y. Sahin, and G. Alsancak. 2011. Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes. Australian Journal of Chemistry 64:965–72. doi:10.1071/ch10481
  • Pavlović, D. M., S. Babić, A. J. Horvat, and M. Kastelan-Macan. 2007. Sample preparation in analysis of pharmaceuticals. TrAC Trends in Analytical Chemistry 26:1062–75. doi:10.1016/j.trac.2007.09.010
  • Payan, M. R., M. A. B. Lopez, R. Fernandez-Torres, M. V. Navarro, and M. C. Mochon. 2011. Hollow fiber-based liquid phase microextraction (HF-LPME) for a highly sensitive HPLC determination of sulfonamides and their main metabolites. Journal of Chromatography B 879:197–204. doi:10.1016/j.jchromb.2010.12.006
  • Pereira, P. F., W. P. da Silva, R. A. A. Muñoz, and E. M. Richter. 2016. A simple and fast batch injection analysis method for simultaneous determination of phenazopyrine, sulfamethoxazole and trimethoprim on boron-doped diamond electrode. Journal of Electroanalytical Chemistry 766:87–93. doi:10.1016/j.jelechem.2016.01.034
  • Preechaworapun, A., S. Chuanuwatanakul, Y. Einaga, K. Grudpan, S. Motomizu, and O. Chailapakul. 2006. Electroanalysis of sulfonamides by flow injection system/high-performance liquid chromatography coupled with amperometric detection using boron-doped diamond electrode. Talanta 68:1726–31. doi:10.1016/j.talanta.2005.08.040
  • Rao, T. N., B. V. Sarada, D. A. Tryk, and A. Fujishima. 2000. Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. Journal of Electroanalytical Chemistry 491:175–81. doi:10.1016/S0022-0728(00)00208-4
  • Reeves, V. B. 1999. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography-positive chemical ionization mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications 723:127–37. doi:10.1016/s0378-4347(98)00548-9
  • Sadeghi, S., and A. Garmroodi. 2014. Sensitive detection of sulfasalazine at screen printed carbon electrode modified with funtionalized multiwalled carbon nanotubes. Journal of Electroanalytical Chemistry 727:171–78. doi:10.1016/j.jelechem.2014.05.034
  • Sadeghi, S., and A. Motaharian. 2013. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum. Materials Science Engineering C 33:4884–91. doi:10.1016/j.msec.2013.08.001
  • Sgobbi, L. F., C. A. Razzino, and S. A. Machado. 2016. A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochimica Acta 191:1010–1017. doi:10.1016/j.electacta.2015.11.151
  • She, Y. X., J. Liu, J. Wang, Y. Liu, R. Wang, and W. Cao. 2010. Determination of sulfonamides in Bovine Milk by ultra-performance liquid chromatography combined with quadrupole mass spectrometry. Analytical Letters 43:2246–56. doi:10.1080/00032711003698796
  • Soleymanpour, A., and S. A. Rezvani. 2016. Development of a novel carbon paste sensor for determination of micromolar amounts of sulfaquinoxaline in pharmaceutical and biological samples. Materials Science and Engineering C 58:504–09. doi:10.1016/j.msec.2015.08.03
  • Souza, C. D., O. C. Braga, I. C. Vieira, and L. A. Spinel. 2008. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using boron-doped diamond electrode. Sensors and Actuators B: Chemical 135:66–73. doi:10.1016/j.snb.2008.07.020
  • Sun, N., S. Wu, H. Chen, D. Zheng, J. Xu, and Y. Ye. 2012. Determination of sulfamethoxazole using molecularly imprinted polymer monolith microextraction coupled to HPLC. Microchimica Acta 179:33–40. doi:10.1007/s00604-012-0862-x
  • Svancara, I., and K. Schachl. 1999. Testing of unmodified carbon paste electrodes. Chemické Listy Journal 93:490–99.
  • Tadi, K. K., R. V. Motghare, and V. Ganesh. 2014. Electrochemical detection of sulfanilamide using pencil graphite electrode based on molecular imprinting technology. Electroanalysis 26:2328–36. doi:10.1002/elan.201400251
  • Thammasoontaree, N., P. Rattanarat, N. Ruecha, W. Siangproh, N. Rodthongkum, and O. Chailapakul. 2014. Ultra-performance liquid chromatography coupled with graphene/polyanailine nanocomposite modified electrode for the determination of sulfonamide residues. Talanta 123:420–29. doi:10.1016/j.talanta.2014.02.004
  • Won, S. Y., C. H. Lee, H. S. Chang, S. H. Kim, and D. S. Kim. 2011. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS. Food Control 22:1101–07. doi:10.1016/j.foodcont.2011.01.005
  • Wormser, G. P., and G. T. Keusch. 1979. Drugs five years later: Trimethoprim-sulfamethoxazole in the united states. Annals of Internal Medicine 91:420–29. doi:10.7326/0003-4819-91-3-420
  • Wutz, K., R. Niessner, and M. Seidel. 2011. Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchimica Acta 173:1–9. doi:10.1007/s00604-011-0548-9
  • Yadav, S. K., P. K. Choubey, B. Agrawal, and R. N. Goyal. 2014. Carbon nanotube embedded poly 1,5-diaminonaphtalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical forulations. Talanta 118:96–103. doi:10.1016/j.talanta.2013.09.061
  • Yoon, H. 2013. Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3:524–49. doi:10.3390/nano3030524
  • Yu, H., Y. Tao, D. Chen, Y. Wang, L. Huang, D. Peng, M. Dai, Z. Liu, X. Wang, and Z. Yuan. 2011. Development of a high performance liquid chromatography method and a liquid chromatography-tandem mass spectrophotometry-tandem mass spectrometry method with the pressurized liquid extraction for the quantification and confirmation of sulfonamides in the foods of animal origin. Journal of Chromatography B 879:2653–62. doi:10.1016/j.jchromb.2011.07.032
  • Yudthavorasit, S., C. Chiaochan, and N. Leepipatpibon. 2011. Simultaneous determination of class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry. Microchimica Acta 172:39–49. doi:10.1007/s00604-010-0454-6
  • Zamora-Gálvez, A., A. Ait-Lahcen, L. A. Mercante, E. Morales-Narvaez, A. Amine, and A. Merkoçi. 2016. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Analytical Chemistry 88:3578–84. doi:10.1021/acs.analchem.5b04092
  • Zhang, W., C. Duan, and M. Wang. 2011. Analysis of seven sulfonamides in milk by cloud point extraction and high performance liquid chromatography. Food Chemistry 126:779–85. doi:10.1016/j.foodchem.2010.11.072
  • Zhao, Y., F. Yuan, X. Quan, H. Yu, S. Chen, H. Zhao, and N. Hilal. 2015. An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Analytical Methods 7:2693–98. doi:10.1039/C4AY03055A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.