100
Views
1
CrossRef citations to date
0
Altmetric
FLOW INJECTION ANALYSIS

Determination of Tryptophan in Pharmaceutical Formulations Using a Sequential Injection–Zone Fluidic–Chemiluminescence Tubular Reactor

&
Pages 849-859 | Received 23 Jun 2017, Accepted 28 Jul 2017, Published online: 14 Dec 2017

References

  • Bagheri, H., M. Ahmadi, T. Madrakian, and A. Afkhami. 2015. Preconcentration and spectrofluorometric determination of L-tryptophan in the presence of D-tryptophan using a chiral magnetic nanoselector. Sensors and Actuators B: Chemical 221:681–87. doi:10.1016/j.snb.2015.07.013.
  • Barnes, D. E., and J. F. van Staden. 1992. Flow-injection analysis in the evaluation of supported liquid membranes. Analytica Chimica Acta 261 (1–2):441–51. doi:10.1016/0003-2670(92)80225-v.
  • Çevikkalp, S. A., G. B. Löker, M. Yaman, and B. Amoutzopoulos. 2016. A simplified HPLC method for determination of tryptophan in some cereals and legumes. Food Chemistry 193:26–29. doi:10.1016/j.foodchem.2015.02.108.
  • Costin, J. W., P. S. Francis, and S. W. Lewis. 2003. Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection. Analytica Chimica Acta 480:67–77. doi:10.1016/s0003-2670(02)01645-8.
  • Cubero, J., F. Toribio, M. Garrido, M. T. Hernández, J. Maynar, C. Barriga, and A. B. Rodríguez. 2010. Assays of the amino acid tryptophan in cherries by HPLC-fluorescence. Food Analytical Methods 3:36–39. doi:10.1007/s12161-009-9084-1.
  • Deng, P., J. Fei, and Y. Feng. 2011. Sensitive voltammetric determination of tryptophan using an acetylene black paste electrode modified with a Schiff’s base derivative of chitosan. Analyst 136:5211–17. doi:10.1039/c1an15351j.
  • Fernstrom, J. D. 1983. Role of precursor availability in control of monoamine biosynthesis in brain. Physiological Reviews 63 (2):484–546.
  • Foord, R., R. Jones, C. J. Oliver, and E. R. Pike. 1969. The use of photomultiplier tubes for photon counting. Applied Optics 8 (10):1975–89. doi:10.1364/ao.8.001975.
  • Gao, C. Y., N. Chu, and S. Fan. 2010. Chemiluminescence behavior and application of Ce(IV)-Tween20-tryptophan system. Analytical Letters 43:2142–51. doi:10.1080/00032711003698770.
  • Gao, C., and S. Fan. 2014. Determination of tyrosine and tryptophan by sequential injection analysis and chemiluminescence detection. Analytical Letters 47:178–89. doi:10.1080/00032719.2013.764532.
  • Guo, Y., S. Guo, Y. Fang, and S. Dong. 2010. Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan. Electrochimica Acta 55:3927–31. doi:10.1016/j.electacta.2010.02.024.
  • Hugli, T. E., and S. Moore. 1972. Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysates. Journal of Biological Chemistry 247:2828–34.
  • Ikeda, M., H. Tsuji, S. Nakamura, A. Ichiyama, Y. Nishizuka, and O. Hayaishi. 1965. Studies on the biosynthesis of nicotinamide adenine dinucleotide. II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. Journal of Biological Chemistry 240 (3):1395–401.
  • Islam, J., H. Shirakawa, T. K. Nguyen, H. Aso, and M. Komai. 2016. Simultaneous analysis of serotonin, tryptophan and tryptamine levels in common fresh fruits and vegetables in Japan using fluorescence HPLC. Food Bioscience 13:56–59. doi:10.1016/j.fbio.2015.12.006.
  • Jagannathan, V., C. March, and J. Venitz. 1995. Determination of unbound L-tryptophan in human plasma using high-performance liquid chromatography with fluorescence detection. Biomedical Chromatography 9:305–08. doi:10.1002/bmc.1130090626.
  • Khaleghi, F., A. E. Irai, V. K. Gupta, S. Agarwal, M. Bijad, and M. Abbasghorbani. 2016. Highly sensitive nanostructure voltammetric sensor employing Pt/CNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate for determination of tryptophan in food and pharmaceutical samples. Journal of Molecular Liquids 223:431–35. doi:10.1016/j.molliq.2016.08.058.
  • Kochen, W., and H. Steinhart. 1994. L-Tryptophan: Current prospects in medicine and drug safety. Berlin: de-Gruyter.
  • Liang, Y. D., and J. F. Song. 2005. Flow-injection chemiluminescence determination of tryptophan through its peroxidation and epoxidation by peroxynitrous acid. Journal of Pharmaceutical and Biomedical Analysis 38:100–06. doi:10.1016/j.jpba.2004.12.010.
  • Liu, Y., and L. Xu. 2007. Electrochemical sensor for tryptophan determination based on copper-cobalt hexacyanoferrate film modified graphite electrode. Sensors 7:2446–57.
  • Marshall G. D. 2017. Global FIA. www.GlobalFia.com.
  • Marshall, G. D., D. Wolcott, and D. Olson. 2003. Zone fluidics in flow analysis: Potentialities and applications. Analytica Chimica Acta 499:29–40. doi:10.1016/j.aca.2003.09.003.
  • Mattivi, F., U. Vrhovšek, and G. Versini. 1999. Determination of indole-3-acetic acid, tryptophan and other indoles in must and wine by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A 855:227–35. doi:10.1016/s0021-9673(99)00696-2.
  • Qiu, H., C. Luo, M. Sun, F. Lu, L. Fan, and X. Li. 2012. Determination of L-tryptophan based on graphene oxide–magnetite-molecularly imprinted polymers and chemiluminescence. Talanta 98:226–30. doi:10.1016/j.talanta.2012.06.078.
  • Ravindran, G., and W. L. Bryden. 2005. Tryptophan determination in proteins and feedstuffs by ion exchange chromatography. Food Chemistry 89:309–14. doi:10.1016/j.foodchem.2004.05.035.
  • Ren, J., M. Zhao, J. Wang, C. Cui, and B. Yang. 2007. Spectrophotometric method for determination of tryptophan in protein hydrolysates. Food Technology and Biotechnology 45:360–66.
  • Schaechter, J. D., and R. J. Wurtman. 1990. Serotonin release varies with brain tryptophan levels. Brain Research 532 (1–2):203–10. doi:10.1016/0006-8993(90)91761-5.
  • Taljaard, R. E., and J. F. van Staden. 1998. Application of sequential injection analysis as process analysers. Laboratory Robotics and Automation 10 (6):325–337. doi:10.1002/(sici)1098-2728(1998)10:6<325::aid-lra3>3.0.co;2-l.
  • Tashkhourian, J., M. Daneshi, and S. F. Nami-Ana. 2016. Simultaneous determination of tyrosine and tryptophan by mesoporous silica nanoparticles modified carbon paste electrode using H-point standard addition method. Analytica Chimica Acta 902:89–96. doi:10.1016/j.aca.2015.10.037.
  • van Staden, J. F. 1998. Flow and sequential injection systems in process control and monitoring. Achievements and challenges. Current Trends in Analytical Chemistry 1:89–118.
  • van Staden, J. F. 2002. Solving the problems of sequential injection systems as process analyzers. Analytica Chimica Acta 467 (1–2):61–73. doi:10.1016/s0003-2670(02)00205-2.
  • van Staden, J. F. 2015a. Analytical continuous flow systems. Where two worlds collide! From gravimetry and test tubes to flow systems to FIA to SIA to PAT and from Orsat to control room to PAT to TAP. Revue Roumaine de Chimie 60 (5–6):403–14.
  • van Staden, J. F. 2015b. Application of phthalocyanines in flow- and sequential-injection analysis and microfluidics systems. Talanta 139:75–88. doi:10.1016/j.talanta.2015.02.026.
  • van Staden, J. K. F., and R. State. 2016. Determination of dopamine using the alkaline luminol-hydrogen peroxide system for sequential injection-zone fluidics analysis. Analytical Letters 49 (17):2783–92. doi:10.1080/00032719.2016.1157691.
  • van Staden, J. F., and R. I. Stefan. 2004. Chemical speciation by sequential injection analysis. An overview. Talanta 64 (5):1109–13.
  • van Staden, J. F., and R. I. Stefan-van Staden. 2010. Application of porphyrins in flow-injection analysis. A review. Talanta 80 (5):1598–605. doi:10.1016/j.talanta.2009.10.016
  • van Staden, J. F., and R. I. Stefan-van Staden. 2012. Flow-injection analysis systems with different detection devices and other related techniques for the in vivo and in vitro determination of dopamine as neurotransmitter. A review. Talanta 102:34–43. doi:10.1016/j.talanta.2012.05.017
  • Wu, F., B. Tong, and Q. Zhang. 2011. Application of a new iridium complex as a chemiluminescence reagent for the determination of tryptophan. Analytical Science 27:529–33.
  • Wurtman, R. J., and F. Anton-Tay. 1969. The mammalian pineal as a neuroendocrine transducer. Recent Progress in Hormone Research 25:493–522. doi:10.1016/b978-0-12-571125-8.50014-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.