306
Views
8
CrossRef citations to date
0
Altmetric
PROCESS ANALYTICAL

Preparation and Characterization of Small Pore Carbon Molecular Sieves by Chemical Vapor Deposition of Pistachio Shells

, &
Pages 2429-2440 | Received 06 Jan 2018, Accepted 22 Jan 2018, Published online: 23 Apr 2018

References

  • Adinata, D., W. M. A. Wan Daud, and M. K. Aroua. 2007. Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation. Fuel Processing Technology 88 (6):599–605. doi:10.1016/j.fuproc.2007.01.009.
  • Ahmad, M., W. M. A. Wan Daud, and M. Aroua. 2007. Synthesis of carbon molecular sieves from palm shell by carbon vapor deposition. J Porous Mater 14:393–9.
  • Ahmad, M. A., W. M. A. Wan Daud, and M. K. Aroua. 2008. Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects 312 (2–3):131–35. doi:10.1016/j.colsurfa.2007.06.040.
  • Arriagada, R., G. Bello, R. García, F. Rodríguez-Reinoso, and A. Sepúlveda-Escribano. 2005. Carbon molecular sieves from hardwood carbon pellets, the influence of carbonization temperature in gas separation properties. Microporous and Mesoporous Materials 81 (1–3):161–67.
  • Askalany, A. A., B. B. Saha, and I. M. Ismail. 2014. Adsorption isotherms and kinetics of HFC410A onto activated carbons. Applied Thermal Engineering 72 (2):237–43. doi:10.1016/j.applthermaleng.2014.04.075.
  • Atchudan, R., J. Joo, and A. Pandurangan. 2013. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition. Materials Research Bulletin 48 (6):2205–12. doi:10.1016/j.materresbull.2013.02.048.
  • Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60 (2):309–19. doi:10.1021/ja01269a023.
  • Daud, W., M. Ahmad, and M. Aroua. 2007. Carbon molecular sieves from palm shell: Effect of the benzene deposition times on gas separation properties. Sep Purif Technol 57:289–93.
  • David, E., A. Talaie, V. Stanciu, and A. C. Nicolae. 2004. Synthesis of carbon molecular sieves by benzene pyrolysis over microporous carbon materials. Journal of Materials Processing Technology 157–158:290–96. doi:10.1016/j.jmatprotec.2004.09.046.
  • Dolas, H., O. Sahin, C. Saka, and H. Demir. 2011. A new method on producing high surface area activated carbon: the effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell. Chemical Engineering Journal 166 (1):191–97. doi:10.1016/j.cej.2010.10.061.
  • Dubinin, M. M., and Radushkevich, L. V. 1947. Equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences of the USSR. Physical Chemistry Section 55:331–33.
  • El-Sharkawy, M. M., A. A. Askalany, K. Harby, and M. S. Ahmed. 2016. Adsorption isotherms and kinetics of a mixture of pentafluoroethane, 1,1,1,2-tetrafluoroethane and difluoromethane (HFC-407C) onto granular activated carbon. Applied Thermal Engineering 93:988–94. doi:10.1016/j.applthermaleng.2015.10.077.
  • Erdogan, T., and F. Oguz Erdogan. 2016. Characterization of the adsorption of disperse yellow 211 on activated carbon from cherry stones following microwave-assisted phosphoric acid treatment. Analytical Letters 49 (7):917–28. http://www.tandfonline.com/doi/full/10.1080/00032719.2015.1086776.
  • Freitas, M. M. A., and J. L. Figueiredo. 2001. Preparation of carbon molecular sieves for gas separations by modification of the pore sizes of activated carbons. Fuel 80 (1):1–6. doi:10.1016/s0016-2361(00)00066-1.
  • Gratuito, M. K. B., T. Panyathanmaporn, R. A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta. 2008. Production of activated carbon from coconut shell: optimization using response surface methodology. Bioresource Technology 99 (11):4887–95. doi:10.1016/j.biortech.2007.09.042.
  • Horikawa, T., J. Hayashi, and K. Muroyama. 2002. Preparation of molecular sieving carbon from waste resin by chemical vapor deposition. Carbon 40 (5):709–14. doi:10.1016/s0008-6223(01)00157-9.
  • Horváth, G., and K. Kawazoe. 1983. Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan 16 (6):470–75. doi:10.1252/jcej.16.470.
  • Hu, Z., and E. F. Vansant. 1995. Carbon molecular sieves produced from walnut shell. Carbon 33 (5):561–67. doi:10.1016/0008-6223(94)00141-l.
  • Ismail, A. F., and L. I. B. David. 2001. A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science 193:1–18. doi:10.1016/s0376-7388(01)00510-5.
  • Kawabuchi, Y., H. Oka, S. Kawano, I. Mochida, and N. Yoshizawa. 1998. The modification of pore size in activated carbon fibers by chemical vapor deposition and its effects on molecular sieve selectivity. Carbon 36 (4):377–82. doi:10.1016/s0008-6223(97)00186-3.
  • Kawabuchi, Y., C. Sotowa, K. Kuroda, S. Kawano, D. D. Whitehurst, and I. Mochida. 1998. Chemical vapor deposition of organic compounds over active carbon fiber to control its porosity and surface function. Synthesis and Characterization of Advanced Materials 681:61–70.
  • Kim, Y. K., H. B. Park, and Y. M. Lee. 2005. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: Effect of the molecular weight of polyvinylpyrrolidone. Journal of Membrane Science 251 (1–2):159–67. doi:10.1016/j.memsci.2004.11.011.
  • Lozano-Castello, D., J. Alcaniz-Monge, D. Cazorla-Amorós, A. Linares-Solano, W. Zhu, F. Kapteijn, and J. A. Moulijn. 2005. Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon 43 (8):1643–51. doi:10.1016/j.carbon.2005.01.042.
  • Mohamed, A. R., M. Mohammadi, and G. N. Darzi. 2010. Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews 14 (6):1591–99. doi:10.1016/j.rser.2010.01.024.
  • Nedumaran, D., and A. Pandurangan. 2015. Effect of H3PW12O40 impregnation on Sn-MCM-41 mesoporous molecular sieves and their physico-chemical properties. Materials Research Bulletin 61:1–8.
  • Nguyen, C., and D. D. Do. 1995. Preparation of carbon molecular sieves from macadamia nut shells. Carbon 33 (12):1717–25. doi:10.1016/0008-6223(96)00130-3.
  • Oguz Erdogan, F. 2016. Characterization of the activated carbon surface of cherry stones prepared by sodium and potassium hydroxide. Analytical Letters 49 (7):1079–90. doi:10.1080/00032719.2015.1065879.
  • Özdemir, M., Ö. Durmuş, Ö. Şahin, and C. Saka. 2016. Removal of methylene blue, methyl violet, rhodamine B, alizarin red, and bromocresol green dyes from aqueous solutions on activated cotton stalks. Desalination and Water Treatment 57 (38):18038–48. doi:10.1080/19443994.2015.1085916.
  • Özhan, A., Ö. Şahin, M. M. Küçük, and C. Saka. 2014. Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose 21 (4):2457–67. doi:10.1007/s10570-014-0299-y.
  • Pedrero, C., T. Cordero, J. Rodriguez-Mirasol, and J. J. Rodríguez. 2001. Preparation of carbon molecular sieves by chemical vapor infiltration of lignin based microporous carbons. http://acs.omnibooksonline.com/data/papers/2001_7.3.pdf.
  • Saeidi, N., and M. N. Lotfollahi. 2016. Effects of powder activated carbon particle size on activated carbon monolith’s properties effects of powder activated carbon particle size on activated carbon monolith’s properties. Materials and Manufacturing Processes 6914:1634–38. doi:10.1080/10426914.2015.1117630.
  • Saka, C. 2012. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis 95:121–24. doi:10.1016/j.jaap.2011.12.020.
  • Sethupathi, S., M. J. Bashir, Z. A. Akbar, and A. R. Mohamed. 2015. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents. Waste Management and Research 33 (4):303–12. doi:10.1177/0734242x15576026.
  • Soffer, A., A. Azariah, A. Amar, H. Cohem, D. Golub, S. Saguee, and H. Tobias. 1997. Method of improving the selectivity of carbon membranes by chemical vapor deposition. US patent 5695818.
  • Son, S., J. Choi, K. Choo, S. Song, S. Vijayalakshmi, and T. Kim Korean. 2005. Development of carbon dioxide adsorbents using carbon materials prepared from coconutshell. Korean J Chem Eng 22:291–7.
  • Verma, S. K., and P. L. Walker. 1992. Preparation of carbon molecular sieves by propylene pyrolysis over microporous carbons. Carbon 30 (6):829–36. doi:10.1016/0008-6223(92)90003-f.
  • Villar-Rodil, S., R. Navarrete, R. Denoyel, A. Albiniak, J. I. Paredes, A. Martínez-Alonso, and J. M. D. Tascón. 2005. Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures. Microporous and Mesoporous Materials 77 (2–3):109–18. doi:10.1016/j.micromeso.2004.08.017.
  • Vyas, S. N., S. R. Patwardhan, S. Vijayalakshmi, and K. S. Ganesh. 1994. Adsorption of gases on carbon molecular sieves. Journal of Colloid and Interface Science 168 (2):275–80. http://pubs.acs.org/doi/abs/10.1021/la961040c.
  • Yeganeh, M. M., T. Kaghazchi, and M. Soleimani. 2006. Effect of raw materials on properties of activated carbons. Chemical Engineering & Technology 29 (10):1247–51. http://doi.wiley.com/10.1002/ceat.200500298.
  • Zhang, T., W. P. Walawender, and L. T. Fan. 2005. Preparation of carbon molecular sieves by carbon deposition from methane. Bioresource Technology 96 (17):1929–35. doi:10.1016/j.biortech.2005.01.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.