553
Views
11
CrossRef citations to date
0
Altmetric
Vibrational Spectroscopy

Label-Free Detection of Bacteria Using Surface-Enhanced Raman Scattering and Principal Component Analysis

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 177-189 | Received 16 Oct 2017, Accepted 23 Feb 2018, Published online: 07 May 2018

References

  • Alula, M. T., S. Krishnan, N. R. Hendricks, L. Karamchand, and J. M. Blackburn. 2017. Identification and quantitation of pathogenic bacteria via in situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchim. Acta 184:219–27. doi:10.1007/s00604-016-2013-2
  • Arnob, M. M. P., and W.-C. Shih. 2017. 3-Dimensional plasmonic substrates based on chicken eggshell bio-templates for SERS-based bio-sensing. Micromachines 8, 196. doi:10.3390/mi8060196
  • Assmann, C., J. Kirchhoff, C. Beleites, J. Hey, S. Kostudis, W. Pfister, P. Schlattmann, J. Popp, and U. Neugebauer. 2015. Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy. Anal. Bioanal. Chem. 407:8343–52. doi:10.1007/s00216-015-8912-y
  • Austin, B., and C. Adams. 1996. Fish pathogens. In The genus aeromonas, ed. B. Austin, M. Altwegg, P. J. Gosling, and S. Joseph, 197–243. New York: John Wiley and Sons.
  • Boardman, A. K., W. S. Wong, W. R. Premasiri, L. D. Ziegler, J. C. Lee, M. Miljkovic, C. M. Klapperich, A. Sharon, and A. F. Sauer-Budge. 2016. Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal. Chem. 88:8026–35. doi:10.1021/acs.analchem.6b01273
  • Bruker UK. 2017. Bruker launches new BRAVO Handheld Raman Spectrometer for Raw Materials identification. Accessed July 10, 2017. https://www.bruker.com/news/pittcon/bravo.html.
  • Das, G., F. Gentile, M. L. Coluccio, A. M. Perri, A. Nicastri, F. Mecarini, G. Cojoc, P. Candeloro, C. Liberale, F. De Angelis, et al. 2011. Principal component analysis based methodology to distinguish protein SERS spectra. J. Mol. Struct. 993:500–505. doi:10.1016/j.molstruc.2010.12.044
  • Daskalov, H. 2006. The importance of Aeromonas hydrophila in food safety. Food Control. 17:474–83. doi:10.1016/j.foodcont.2005.02.009
  • Davis, C. P. PhD thesis. 2015. E. coli 0157:H7 (Escherichia coli 0157:H7 infection).
  • De Gelder, J., K. De Gussem, P. Vandenabeele, M. Vancanneyt, P. De Vos, and L. Moens. 2007. Methods for extracting biochemical information from bacterial Raman spectra: Focus on a group of structurally similar biomolecules – Fatty acids. Anal. Chim. Acta 603:167–75. doi:10.1016/j.aca.2007.09.049
  • Decousser, J.-W., N. Ramarao, C. Duport, M. Dorval, N. Bourgeois-Nicolaos, M.-H. Guinebretière, H. Razafimahefa, and F. Doucet-Populaire. 2013. Bacillus cereus and severe intestinal infections in preterm neonates: Putative role of pooled breast milk. Am. J. Infect. Control 41:918–21. doi:10.1016/j.ajic.2013.01.043
  • Dina, N. E., A. Colniţă, T. Szöke-Nagy, and A. S. Porav. 2017. A critical review on ultrasensitive, spectroscopic-based methods for high-throughput monitoring of bacteria during infection treatment. Crit. Rev. Anal. Chem. 47:499–512. doi:10.1080/10408347.2017.1332974
  • Eberhardt, K., C. Stiebing, C. Matthaus, M. Schmitt, and J. Popp. 2015. Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Rev. Mol. Diagn. 15:773–87. doi:10.1586/14737159.2015.1036744
  • Efrima, S., and L. Zeiri. 2008. Understanding SERS of bacteria. J. Raman Spec. 40:277–88. doi:10.1002/jrs.2121
  • Ehling-Schulz, M., M. Fricker, and S. Scherer. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48:479–87. doi:10.1002/mnfr.200400055
  • Fan, C., Z. Hu, A. Mustapha, and M. Lin. 2011. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Appl. Microbiol. Biotechnol. 92:1053–61. doi:10.1007/s00253-011-3634-3
  • Freitag, I., C. Beleites, S. Dochow, J. H. Clement, C. Krafft, and J. Popp. 2016. Recognition of tumor cells by immuno-SERS-markers in a microfluidic chip at continuous flow. Analyst 141:5986–89. doi:10.1039/c6an01739h
  • Galler, K., E. Frohlich, A. Kortgen, M. Bauer, J. Popp, and U. Neugebauer. 2016. Hepatic cirrhosis and recovery as reflected by Raman spectroscopy: Information revealed by statistical analysis might lead to a prognostic biomarker. Anal. Bioanal. Chem. 408:8053–63. doi:10.1007/s00216-016-9905-1
  • Galler, K., R. P. Requardt, U. Glaser, R. Markwart, T. Bocklitz, M. Bauer, J. Popp, and U. Neugebauer. 2016. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells. Sci. Rep. 6:24155. doi:10.1038/srep24155
  • Gauthier, D. T. 2015. Bacterial zoonoses of fishes: A review and appraisal of evidence for linkages between fish and human infections. Vet. J. 203, 27–35. doi:10.1016/j.tvjl.2014.10.028
  • Guinebretière, M.-H., F. L. Thompson, A. Sorokin, P. Normand, P. Dawyndt, M. Ehling-Schulz, B. Svensson, V. Sanchis, C. Nguyen-The, M. Heyndrickx, et al. 2008. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 10:851–65. doi:10.1111/j.1462-2920.2007.01495.x
  • Heidari Torkabadi, H., C. R. Bethel, K. M. Papp-Wallace, P. A. J. de Boer, R. A. Bonomo, and P. R. Carey. 2014. Following Drug uptake and reactions inside Escherichia coli cells by Raman microspectroscopy. Biochemistry 53:4113–21. doi:10.1021/bi500529c
  • Hidi, I. J., M. Jahn, M. W. Pletz, K. Weber, D. Cialla-May, and J. Popp. 2016. Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique. J. Phys. Chem. C 120:20613–23. doi:10.1021/acs.jpcc.6b01005
  • Ivleva, N. P., M. Wagner, H. Horn, R. Niessner, and C. Haisch. 2008. In situ surface-enhanced Raman scattering analysis of biofilm. Anal. Chem. 80:8538–44. doi:10.1021/ac801426m
  • Jarvis, R. M., A. Brooker, and R. Goodacre. 2004. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal. Chem. 76:5198–202. doi:10.1021/ac049663f
  • Kim, D. H., and B. Austin. 2008. Characterization of probiotic carnobacteria isolated from rainbow trout (Oncorhynchus mykiss) intestine. Lett. Appl. Microbiol. 47:141–47. doi:10.1111/j.1472-765x.2008.02401.x
  • Kneipp, J., H. Kneipp, and K. Kneipp. 2008. SERS-a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37:1052–60. doi:10.1039/b708459p
  • Kneipp, K., Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld. 1997. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78:1667–70. doi:10.1103/physrevlett.78.1667
  • Ko, Y. C., H. Y. Fang, and D. H. Chen. 2017. Fabrication of Ag/ZnO/reduced graphene oxide nanocomposite for SERS detection and multiway killing of bacteria. J. Alloys Compd. 695:1145–53. doi:10.1016/j.jallcom.2016.10.241
  • Leopold, N., and B. Lendl. 2003. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 107:5723–27. doi:10.1021/jp027460u
  • Liu, Y., Y. R. Chen, X. Nou, and K. Chao. 2007. Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles. Appl. Spectrosc. 61:824–31. doi:10.1366/000370207781540060
  • Lu, X., H. M. Al-Qadiri, M. Lin, and B. A. Rascao. 2011. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol. 4:919–35. doi:10.1007/s11947-011-0516-8
  • Naranjo, M., S. Denayer, N. Botteldoorn, L. Delbrassinne, J. Veys, J. Waegenaere, N. Sirtaine, R. B. Driesen, K. R. Sipido, J. Mahillon, et al. 2011. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 49:4379–81. doi:10.1128/jcm.05129-11
  • Natarajan, N., and M. Rajikkannu. 2014. Antimicrobial activity of Bacillus cereus strain isolated from Rohu (Labeo rohita). Int. J. Curr. Microbiol. Appl. Sci. 3:474–80.
  • Neugebauer, U., P. Rösch, and J. Popp. 2015. Raman spectroscopy towards clinical application: Drug monitoring and pathogen identification. Int. J. Antimicrob. Agents 46 (Supplement 1):S35–39. doi:10.1016/j.ijantimicag.2015.10.014
  • Nie, S., and S. R. Emory. 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–06. doi:10.1126/science.275.5303.1102
  • Premasiri, W. R., J. C. Lee, A. Sauer-Budge, R. Théberge, C. E. Costello, and L. D. Ziegler. 2016. The biochemical origins of the surface-enhanced Raman spectra of bacteria: A metabolomics profiling by SERS. Anal. Bioanal. Chem. 408:1–17. doi:10.1007/s00216-016-9540-x
  • Primera-Pedrozo, O. M., M. Rodriguez Gdel, J. Castellanos, H. Felix-Rivera, O. Resto, and S. P. Hernandez-Rivera. 2012. Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions. Spectrochim. Acta Part A 87:77–85. doi:10.1016/j.saa.2011.11.012
  • Ramarao, N., and V. Sanchis. 2013. The pore-forming haemolysins of Bacillus Cereus: A review. Toxins 5:1119–39. doi:10.3390/toxins5061119
  • Realitatea.Net, RO. 2016. ALERTĂ. Sindromul hemolitic uremic se întoarce. Trei copii, internaţi cu această afecţiune. Accessed June 21, 2017. http://www.realitatea.net/nou-caz-de-sindrom-hemolitic-uremic-o-fetita-din-pitesti-internata-la-marie-curie-astazi_1935087.html.
  • Schröder, U.-C., C. Beleites, C. Assmann, U. Glaser, U. Hübner, W. Pfister, W. Fritzsche, J. Popp, and U. Neugebauer. 2015. Detection of vancomycin resistances in enterococci within 3½ hours. Sci. Rep. 5:1–7. doi:10.1038/srep08217
  • Schuster, K. C., E. Urlaub, and J. R. Gapes. 2000. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods 42:29–38. doi:10.1016/s0167-7012(00)00169-x
  • Stenfors Arnesen, L. P., A. Fagerlund, and P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32:579–606. doi:10.1111/j.1574-6976.2008.00112.x
  • Su, L., P. Zhang, D.-W. Zheng, Y.-J.-Q. Wang, and R.-G. Zhong. 2015. Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron. Lett. 11:157–60. doi:10.1007/s11801-015-4216-x
  • Tang, M., G. D. McEwen, Y. Wu, C. D. Miller, and A. Zhou. 2013. Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Anal. Bioanal. Chem. 405:1577–91. doi:10.1007/s00216-012-6556-8
  • Tódor, I. S., L. Szabó, O. T. Marişca, V. Chiş, and N. Leopold. 2014. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature. J. Nanopart. Res. 16:2740. doi:10.1007/s11051-014-2740-4
  • Tolstik, E., L. A. Osminkina, C. Matthaus, M. Burkhardt, K. E. Tsurikov, U. A. Natashina, V. Y. Timoshenko, R. Heintzmann, J. Popp, and V. Sivakov. 2016. Studies of silicon nanoparticles uptake and biodegradation in cancer cells by Raman spectroscopy. Nanomed. Nanotechnol. Biol. Med. 12:1931–40. doi:10.1016/j.nano.2016.04.004
  • Trefry, J. C., J. L. Monahan, K. M. Weaver, A. J. Meyerhoefer, M. M. Markopolous, Z. S. Arnold, D. P. Wooley, and I. E. Pavel. 2010. Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors. J. Am. Chem. Soc. 132:10970–72. doi:10.1021/ja103809c
  • Wang, C., J. Wang, M. Li, X. Qu, K. Zhang, Z. Rong, R. Xiao, and S. Wang. 2016. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 141:6226–38. doi:10.1039/c6an01105e
  • Wang, P., S. Pang, J. Chen, L. McLandsborough, S. R. Nugen, M. Fan, and L. He. 2016. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst 141:1356–62. doi:10.1039/c5an02175h
  • Wang, W., V. Hynninen, L. Qiu, A. Zhang, T. Lemma, N. Zhang, H. Ge, J. J. Toppari, V. P. Hytönen, and J. Wang. 2017. Synergistic enhancement via plasmonic nanoplate-bacteria-nanorod supercrystals for highly efficient SERS sensing of food-borne bacteria. Sens. Actuators, B 239:515–25. doi:10.1016/j.snb.2016.08.040
  • Willets, K. A. 2009. Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Anal. Bioanal. Chem. 394:85–94. doi:10.1007/s00216-009-2682-3
  • Yang, D., H. Zhou, C. Haisch, R. Niessner, and Y. Ying. 2016. Reproducible E. coli detection based on label-free SERS and mapping. Talanta 146:457–63. doi:10.1016/j.talanta.2015.09.006
  • Zeiri, L., and S. Efrima. 2005. Surface-enhanced Raman spectroscopy of bacteria: The effect of excitation wavelength and chemical modification of the colloidal milieu. J. Raman Spec. 36:667–75. doi:10.1002/jrs.1349
  • Zhou, H., D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner, and C. Haisch. 2014. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 86:1525–33. doi:10.1021/ac402935p
  • Zhou, H., D. Yang, N. Mircescu, N. Ivleva, K. Schwarzmeier, A. Wieser, S. Schubert, R. Niessner, and C. Haisch. 2015a. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim. Acta 182:2259–66. doi:10.1007/s00604-015-1570-0
  • Zhou, H., D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schuert, R. Niessner, A. Wieser, and C. Haisch. 2015b. Label-free in Situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal. Chem. 87:6553–61. doi:10.1021/acs.analchem.5b01271

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.