202
Views
4
CrossRef citations to date
0
Altmetric
FLUORESCENCE

Fluorescent Determination of Glucose Using Silicon Nanodots

, , , &
Pages 2895-2905 | Received 30 Jan 2018, Accepted 20 Mar 2018, Published online: 11 May 2018

References

  • Bahshi, L., R. Freeman, R. Gill, and I. Willner. 2009. Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. Small 5:676–80. doi:10.1002/smll.200801403.
  • Cao, X., N. Wang, S. Jia, and Y. Shao. 2013. Detection of glucose based on bimetallic PtCu nanochains modified electrodes. Analytical Chemistry 85:5040–46. doi:10.1021/ac400292n.
  • Chen, Q., M. Liu, J. Zhao, X. Peng, X. Chen, N. Mi, B. Yin, H. Li, Y. Zhang, and S. Yao. 2014. Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose. Chemical Communications 50:6771–74. doi:10.1039/c4cc01703j.
  • Chen, W. W., H. Yao, C. H. Tzang, J. J. Zhu, M. S. Yang, and S. T. Lee. 2006. Silicon nanowires for high-sensitivity glucose detection. Applied Physics Letters 88:213104. doi:10.1063/1.2206102.
  • Davanlou, A., H. J. Cho, and R. Kumar. 2016. In situ colorimetric detection and mixing of glucose–enzyme droplets in an open-surface platform via Marangoni effect. Microfluidics and Nanofluidics 20:96. doi:10.1007/s10404-016-1759-5.
  • Feng, Y., Y. Liu, C. Su, X. Ji, and Z. He. 2014. New fluorescent pH sensor based on label-free silicon nanodots. Sensors and Actuators B: Chemical 203:795–801. doi:10.1016/j.snb.2014.07.050.
  • Guariguata, L., D. R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, and J. E. Shaw. 2014. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice 103:137–49.
  • Huang, X. C., Y. Inoue-Aono, Y. Moriyasu, P. Y. Hsieh, W. M. Tu, S. C. Hsiao, W. N. Jane, and H. Y. Hsu. 2016. Plant cell wall-penetrable, redox-responsive silica nanoprobe for the imaging of starvation-induced vesicle trafficking. Analytical Chemistry 88:10231–36. doi:10.1021/acs.analchem.6b02920.
  • Kang, F., X. Hou, and K. Xu. 2015. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles. Nanotechnology 26:405707. doi:10.1088/0957-4484/26/40/405707.
  • Khan, S. A., G. T. Smith, F. Seo, and A. K. Ellerbee. 2015. Label-free and non-contact optical biosensing of glucose with quantum dots. Biosensors and Bioelectronics 64:30–35. doi:10.1016/j.bios.2014.08.035.
  • Kim, E. J., E. B. Kim, S. W. Lee, S. A. Cheon, H. J. Kim, J. Lee, M. K. Lee, S. Ko, and T. J. Park. 2017. An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosensors and Bioelectronics 87:150–56. doi:10.1016/j.bios.2016.08.034.
  • Kim, N. Y., K. K. Adhikari, R. Dhakal, Z. Chuluunbaatar, C. Wang, and E. S. Kim. 2015. Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Scientific Reports 5:7807. doi:10.1038/srep07807.
  • Lim, K. R., J. M. Park, H. N. Choi, and W. Y. Lee. 2013. Gold glyconanoparticle-based colorimetric bioassay for the determination of glucose in human serum. Microchemical Journal 106:154–59. doi:10.1016/j.microc.2012.06.003.
  • Liu, Q., Y. Yang, X. Lv, Y. Ding, Y. Zhang, J. Jing, and C. Xu. 2017. One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors and Actuators B: Chemical 240:726–34. doi:10.1016/j.snb.2016.09.049.
  • Lubin, A. A., and K. W. Plaxco. 2010. Folding-based electrochemical biosensors: The case for responsive nucleic acid architectures. Accounts of Chemical Research 43:496–505. doi:10.1021/ar900165x.
  • Ma, J. L., B. C. Yin, X. Wu, and B. C. Ye. 2016. Simple and cost-effective glucose detection based on carbon nanodots supported on silver nanoparticles. Analytical Chemistry 89:1323–28. doi:10.1021/acs.analchem.6b04259.
  • Montalti, M., L. Prodi, E. Rampazzo, and N. Zaccheroni. 2014. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chemical Society Reviews 43:4243–68. doi:10.1039/c3cs60433k.
  • Nichols, S. P., A. Koh, W. L. Storm, J. H. Shin, and M. H. Schoenfisch. 2013. Biocompatible materials for continuous glucose monitoring devices. Chemical Reviews 113:2528–49. doi:10.1021/cr300387j.
  • Qiu, Z., J. Shu, Y. He, Z. Lin, K. Zhang, S. Lv, and D. Tang. 2017. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosensors and Bioelectronics 87:18–24. doi:10.1016/j.bios.2016.08.003.
  • Radhakumary, C., and K. Sreenivasan. 2011. Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Analytical Chemistry 83:2829–33. doi:10.1021/ac1032879.
  • Shang, L., L. Yang, H. Wang, and G. U. Nienhaus. 2016. In situ monitoring of the intracellular stability of nanoparticles by using fluorescence lifetime imaging. Small 12:868–73. doi:10.1002/smll.201503316.
  • Shoji, E., and M. S. Freund. 2002. Potentiometric saccharide detection based on the pKa changes of Poly(aniline boronic acid). Journal of the American Chemical Society 124:12486–93. doi:10.1021/ja0267371.
  • Sun, X., and T. D. James. 2015. Glucose sensing in supramolecular chemistry. Chemical Reviews 115:8001–37. doi:10.1021/cr500562m.
  • Tan, L., X. He, D. Chen, X. Wu, H. Li, X. Ren, X. Meng, and F. Tang. 2013. Highly H2O2-sensitive electrospun quantum dots nanocomposite films for fluorescent biosensor. Journal of Biomedical Nanotechnology 9:53–60.
  • Tang, Z., Z. Lin, G. Li, and Y. Hu. 2017. Amino nitrogen quantum dots-based nanoprobe for fluorescence detection and imaging of cysteine in biological samples. Analytical Chemistry 89:4238–45. doi:10.1021/acs.analchem.7b00284.
  • Wang, J. 2008. Electrochemical glucose biosensors. Chemical Reviews 108:814–25. doi:10.1021/cr068123a.
  • Wu, C., X. Peng, Q. Lu, H. Li, Y. Zhang, and S. Yao. 2017. Ultrasensitive silicon nanoparticle ratiometric fluorescence determination of mercury(II). Analytical Letters 51 (7):1013–28. doi:10.1080/00032719.2017.1370595.
  • Xiong, L., X. Du, F. Kleitz, and S. Z. Qiao. 2015. Cancer-cell-specific nuclear-targeted drug delivery by dual-ligand-modified mesoporous silica nanoparticles. Small 11:5919–26. doi:10.1002/smll.201501056.
  • Yao, Y., and C. Zhang. 2016. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed Microdevices 18:92. doi:10.1007/s10544-016-0115-6.
  • Yi, Y., J. Deng, Y. Zhang, H. Li, and S. Yao. 2013. Label-free Si quantum dots as photoluminescence probes for glucose detection. Chemical Communications 49:612–14. doi:10.1039/c2cc36282a.
  • Yu, C., J. Li, Y. Li, S. A. Shahzad, J. Chen, Y. Chen, Y. Wang, and M. Yang. 2015. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe. Chemical Communications 51:6354–56. doi:10.1039/c4cc10381e.
  • Zhang, H., H. Huang, Z. Lin, and X. Su. 2014. A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide–DNA interaction. Analytical and Bioanalytical Chemistry 406:6925–32. doi:10.1007/s00216-014-7758-z.
  • Zhang, J., Y. Ji, H. Dong, W. Wang, and Z. Chen. 2016. Electrochemical determination of glucose using a platinum–palladium nanoparticle carbon nanofiber glassy carbon electrode. Analytical Letters 49:2741–54. doi:10.1080/00032719.2016.1159694.
  • Zhang, Z., Z. Chen, F. Cheng, Y. Zhang, and L. Chen. 2017. Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosensors and Bioelectronics 89:932–36. doi:10.1016/j.bios.2016.09.090.
  • Zheng, M., Y. Li, S. Liu, W. Wang, Z. Xie, and X. Jing. 2016. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Applied Materials & Interfaces 8:23533–41. doi:10.1021/acsami.6b07453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.