1,109
Views
52
CrossRef citations to date
0
Altmetric
BIOSENSORS

Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics

, &
Pages 2933-2966 | Received 20 Feb 2018, Accepted 23 Mar 2018, Published online: 11 May 2018

References

  • Abdelhamid, H. N., and H.-F. Wu. 2018. Selective biosensing of Staphylococcus aureus using chitosan quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 188 (Supplement C):50–56. doi:10.1016/j.saa.2017.06.047
  • Abdelhaseib, M. U., A. K. Singh, M. Bailey, M. Singh, T. El-Khateib, and A. K. Bhunia. 2016. Fiber optic and light scattering sensors: Complimentary approaches to rapid detection of Salmonella enterica in food samples. Food Control 61:135–45. doi:10.1016/j.foodcont.2015.09.031
  • Ahmad, L. M., B. Towe, A. Wolf, F. Mertens, and J. Lerchner. 2010. Binding event measurement using a chip calorimeter coupled to magnetic beads. Sensors and Actuators B: Chemical 145 (1):239–45. doi:10.1016/j.snb.2009.12.012
  • Ahmed, M. U., M. M. Hossain, M. Safavieh, Y. L. Wong, I. A. Rahman, M. Zourob, and E. Tamiya. 2016. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Critical Reviews in Biotechnology 36 (3):495–505. doi:10.3109/07388551.2014.992387
  • Almeida, M. I. G. S., B. M. Jayawardane, S. D. Kolev, and I. D. McKelvie. 2018. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta 177 (Supplement C):176–90. doi:10.1016/j.talanta.2017.08.072
  • Alocilja, E. C., and S. M. Radke. 2003. Market analysis of biosensors for food safety. Biosensors and Bioelectronics 18 (5–6):841–46. doi:10.1016/s0956-5663(03)00009-5
  • Andrews, W. H. 1996. Validation of modern methods in food microbiology by AOAC International collaborative study. Food Control 7 (1), 19–29. [International collaborative study. Food Control 7 (1):19–29]. doi:10.1016/0956-7135(96)00007-2
  • Arcila-Lozano, L. S., M. A. Ríos-Corripio, B. E. García-Pérez, M. E. Jaramillo-Flores, C. A. González, R. C. Rocha-Gracia, J. M. Gracia-Jiménez, and M. Rojas-López. 2017. Fluorescent bioconjugate based on gold nanoparticles for the determination of Staphylococcus aureus. Analytical Letters 50 (7):1150–67. doi:10.1080/00032719.2016.1212204
  • Arora, P., A. Sindhu, N. Dilbaghi, and A. Chaudhury. 2011. Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics 28 (1):1–12. doi:10.1016/j.bios.2011.06.002
  • Arshak, K., V. Velusamy, O. Korostynska, K. Oliwa-Stasiak, and C. Adley. 2009. Conducting polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. Sensors Journal, IEEE 9 (12):1942–51. doi:10.1109/jsen.2009.2032052
  • Ashley, J., M.-A. Shahbazi, K. Kant, V. A. Chidambara, A. Wolff, D. D. Bang, and Y. Sun. 2017. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors and Bioelectronics 91 (Supplement C):606–15. doi:10.1016/j.bios.2017.01.018
  • Bagheryan, Z., J.-B. Raoof, M. Golabi, A. P. F. Turner, and V. Beni 2016. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosensors and Bioelectronics 80:566–73. doi:10.1016/j.bios.2016.02.024
  • Barbau-Piednoir, E., N. Botteldoorn, J. Mahillon, K. Dierick, and N. H. Roosens. 2015. Fast and discriminative CoSYPS detection system of viable Salmonella spp. and Listeria spp. in carcass swab samples. International Journal of Food Microbiology 192:103–10. doi:10.1016/j.ijfoodmicro.2014.09.018
  • Batalla, P., A. Martín, M. A. N. Loó0pez, M. A. C. Gonzaález, and A. Escarpa. 2015. Enzyme-based microfluidic chip coupled to graphene electrodes for the detection of d-amino acid enantiomer-biomarkers. Analytical Chemistry 87 (10):5074–78. doi:10.1021/acs.analchem.5b00979
  • Bayraç, C., F. Eyidoğan, and H. Avni Öktem. 2017. DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis. Biosensors and Bioelectronics 98 (Supplement C):22–28. doi:10.1016/j.bios.2017.06.029
  • Bhadoria, R., and H. S. Chaudhary. 2011. Recent advances of biosensors in biomedical sciences. International Journal of Drug Delivery 3 (4):571.
  • Bhaisare, M. L., G. Gedda, M. S. Khan, and H.-F. Wu. 2016. Fluorimetric detection of pathogenic bacteria using magnetic carbon dots. Analytica Chimica Acta 920 (Supplement C):63–71. doi:10.1016/j.aca.2016.02.025
  • Bhardwaj, N., S. K. Bhardwaj, M. K. Nayak, J. Mehta, K.-H. Kim, and A. Deep. 2017. Fluorescent nanobiosensors for the targeted detection of foodborne bacteria. TRAC Trends in Analytical Chemistry 97 (Supplement C):120–35. doi:10.1016/j.trac.2017.09.010
  • Bhunia, A. K. 2008. Biosensors and bio‐based methods for the separation and detection of foodborne pathogens. Advances in Food and Nutrition Research 54:1–44. doi:10.1016/S1043-4526(07)00001-0
  • Bhunia, A. K. 2014. One day to one hour: how quickly can foodborne pathogens be detected? Future Microbiology 9 (8):935–46. doi:10.2217/fmb.14.61
  • Biran, I., X. Yu, and D. R. Walt. 2008. Optrode-based fiber optic biosensors (bio-optrode). In Optical biosensors, 2nd ed., Elsevier, 3–82. doi:10.1016/B978-044453125-4.50003-6
  • Bisha, B., J. A. Adkins, J. C. Jokerst, J. C. Chandler, A. Pérez-Méndez, S. M. Coleman, A. O. Sbodio, T. V. Suslow, M. D. Danyluk, C. S. Henry, et al. 2014. Colorimetric paper-based detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes of agricultural water. Journal of Visualized Experiments 88:51414. doi:10.3791/51414
  • Biswas, A., S. Banerjee, E. V. Gart, A. T. Nagaraja, and M. J. McShane. 2017. Gold nanocluster containing polymeric microcapsules for intracellular ratiometric fluorescence biosensing. ACS Omega 2 (6):2499–506. doi:10.1021/acsomega.7b00199
  • Cai, D., L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, and J. H. Chuang. 2010. A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nature Nanotechnology 5 (8):597–601. doi:10.1038/nnano.2010.114
  • Cao, J., C. Feng, Y. Liu, S. Wang, and F. Liu. 2014. Highly sensitive and rapid bacteria detection using molecular beacon–Au nanoparticles hybrid nanoprobes. Biosensors and Bioelectronics 57 (Supplement C):133–38. doi:10.1016/j.bios.2014.02.020
  • Chambers, J. P., B. P. Arulanandam, L. L. Matta, A. Weis, and J. J. Valdes. 2008. Biosensor recognition elements, DTIC Document.
  • Charlermroj, R., O. Gajanandana, C. Barnett, K. Kirtikara, and N. Karoonuthaisiri. 2011. A chemiluminescent antibody array system for detection of foodborne pathogens in milk. Analytical Letters 44 (6):1085–99. doi:10.1080/00032719.2010.511736
  • Chen, L., and G. Lu. 2007. Novel amperometric biosensor based on composite film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin. Sensors and Actuators B: Chemical 121 (2):423–29. doi:10.1016/j.snb.2006.04.067
  • Chinnayelka, S., and M. J. McShane. 2005. Microcapsule biosensors using competitive binding resonance energy transfer assays based on apoenzymes. Analytical Chemistry 77 (17):5501–11. doi:10.1021/ac050755u
  • Chiriacò, M. S., E. Primiceri, F. De Feo, A. Montanaro, A. G. Monteduro, A. Tinelli, M. Megha, D. Carati, and G. Maruccio. 2016. Simultaneous detection of multiple lower genital tract pathogens by an impedimetric immunochip. Biosensors and Bioelectronics 79:9–14. doi:10.1016/j.bios.2015.11.100
  • Choi, J. R., J. Hu, R. Tang, Y. Gong, S. Feng, H. Ren, T. Wen, X. Li, W. A. B. W. Abas, and B. Pingguan-Murphy. 2016. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab on a Chip 16 (3):611–21. doi:10.1039/c5lc01388g
  • Cohen, T., J. Starosvetsky, U. Cheruti, and R. Armon. 2010. Whole cell imprinting in sol-gel thin films for bacterial recognition in liquids: macromolecular fingerprinting. International Journal of Molecular Sciences 11 (4):1236–52. doi:10.3390/ijms11041236
  • Cosio, M. S., S. Benedetti, M. Scampicchio, S. Mannino, A. Escarpa, M. C. González, and M. Á. López. 2015. Electroanalysis in food process control. Agricultural and food electroanalysis, 421–41. Milano, Italy: John Wiley & Sons, Ltd.
  • de Carvalho, C. C. 2011. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnology Advances 29 (1):75–83. doi:10.1016/j.biotechadv.2010.09.001
  • Donhauser, S. C., R. Niessner, and M. Seidel 2011. Sensitive quantification of Escherichia coli O157: H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Analytical Chemistry 83 (8):3153–60. doi:10.1021/ac2002214
  • Doughan, S., Y. Han, U. Uddayasankar, and U. J. Krull. 2014. Solid-phase covalent immobilization of upconverting nanoparticles for biosensing by luminescence resonance energy transfer. ACS Applied Materials & Interfaces 6 (16):14061–68. doi:10.1021/am503391m
  • Drachuk, I., S. Harbaugh, R. Geryak, D. L. Kaplan, V. V. Tsukruk, and N. Kelley-Loughnane. 2017. Immobilization of recombinant E. coli cells in a bacterial cellulose–silk composite matrix to preserve biological function. ACS Biomaterials Science & Engineering 3 (10):2278–92. doi:10.1021/acsbiomaterials.7b00367
  • Duan, N., S. Wu, X. Chen, Y. Huang, Y. Xia, X. Ma, and Z. Wang. 2013. Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX). Journal of Agricultural and Food Chemistry 61 (13):3229–34. doi:10.1021/jf400767d
  • Duan, N., S. Wu, C. Zhu, X. Ma, Z. Wang, Y. Yu, and Y. Jiang. 2012. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Analytica Chimica Acta 723 (Supplement C):1–6. doi:10.1016/j.aca.2012.02.011
  • Duan, Y. F., Y. Ning, Y. Song, and L. Deng. 2014. Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchimica Acta 181 (5):647–53. doi:10.1007/s00604-014-1170-4
  • Duffy, G. F., and E. J. Moore. 2017. Electrochemical immunosensors for food analysis: a review of recent developments. Analytical Letters 50 (1):1–32. doi:10.1080/00032719.2016.1167900
  • DuVall, J. A., S. T. Cabaniss, M. L. Angotti, J. H. Moore, M. Abhyankar, N. Shukla, D. L. Mills, B. G. Kessel, G. T. Garner, and N. S. Swami. 2016. Rapid detection of Clostridium difficile via magnetic bead aggregation in cost-effective polyester microdevices with cell phone image analysis. Analyst 141 (19):5637–45. doi:10.1039/c6an00674d
  • Eggins, B. R. 2013. Biosensors: an introduction. oxford, England: Springer-Verlag.
  • Ellison, S. L. 2014. Implementing measurement uncertainty for analytical chemistry: the Eurachem Guide for measurement uncertainty. Metrologia 51 (4):S199. doi:10.1088/0026-1394/51/4/s199
  • Ertürk, G., and R. Lood. 2018. Bacteriophages as biorecognition elements in capacitive biosensors: Phage and host bacteria detection. Sensors and Actuators B: Chemical 258 (Supplement C):535–43. doi:10.1016/j.snb.2017.11.117
  • Evtugyn, G. A., R. V. Shamagsumova, and T. Hianik. 2017. 2 - Biosensors for detection mycotoxins and pathogenic bacteria in food. In Nanobiosensors, ed. A. M. Grumezescu, 35–92. Bucharest, Romania: Academic Press.
  • Fang, Y., Y. Umasankar, and R. P. Ramasamy. 2016. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosensors and Bioelectronics 81:39–45. doi:10.1016/j.bios.2016.01.095
  • Faruque, S. M. 2012. Foodborne and waterborne bacterial pathogens: epidemiology, evolution and molecular biology. Dhaka, Bangladesh: Horizon Scientific Press.
  • Fu, Z., X. Zhou, and D. Xing. 2013. Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle. Sensors and Actuators B: Chemical 182 (Supplement C):633–41. doi:10.1016/j.snb.2013.03.033
  • Gervais, L., N. De Rooij, and E. Delamarche. 2011. Microfluidic chips for point‐of‐care immunodiagnostics. Advanced Materials 23(24). doi:10.1002/adma.201100464
  • Golabi, M., F. Kuralay, E. W. H. Jager, V. Beni, and A. P. F. Turner. 2017. Electrochemical bacterial detection using poly(3-aminophenylboronic acid)-based imprinted polymer. Biosensors and Bioelectronics 93 (Supplement C):87–93. doi:10.1016/j.bios.2016.09.088
  • He, Y., M. Wang, E. Fan, H. Ouyang, H. Yue, X. Su, G. Liao, L. Wang, S. Lu, and Z. Fu. 2017. Highly specific bacteriophage-affinity strategy for rapid separation and sensitive detection of viable Pseudomonas aeruginosa. Analytical Chemistry 89 (3):1916–21. doi:10.1021/acs.analchem.6b04389
  • Heng, S., M.-C. Nguyen, and T. M. Roman Kostecki. 2013. Conference 8774: Optical Sensors 2013. Optics + Optoelectronics: 48.
  • Huang, A., Z. Qiu, M. Jin, Z. Shen, Z. Chen, X. Wang, and J.-W. Li. 2014. High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels. International Journal of Food Microbiology 185 (Supplement C):27–32. doi:10.1016/j.ijfoodmicro.2014.05.012
  • Huang, S., R. Lakshmanan, S. Horikawa, B. Chin, and J. Barbaree. 2010. General detector capabilities for food safety applications. Wiley Handbook of Science and Technology for Homeland Security, Auburn, Alabama.
  • Huang, Y., X. Dong, Y. Liu, L.-J. Li, and P. Chen. 2011. Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry 21 (33):12358–62. doi:10.1039/c1jm11436k
  • Huang, Y., H. Zhang, X. Chen, X. Wang, N. Duan, S. Wu, B. Xu, and Z. Wang. 2015. A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk. Biosensors and Bioelectronics 74 (Supplement C):170–76. doi:10.1016/j.bios.2015.06.046
  • Idil, N., M. Hedström, A. Denizli, and B. Mattiasson. 2017. Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosensors and Bioelectronics 87(Supplement C):807–15. doi:10.1016/j.bios.2016.08.096
  • Ivnitski, D., I. Abdel-Hamid, P. Atanasov, and E. Wilkins. 1999. Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics 14 (7):599–624. doi:10.1016/s0956-5663(99)00039-1
  • Ivnitski, D., I. Abdel-Hamid, P. Atanasov, E. Wilkins, and S. Stricker. 2000. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12 (5):317–25. doi:10.1002/(sici)1521-4109(20000301)12:5<317::aid-elan317>3.0.co;2-a
  • Jiang, H., D. Jiang, J. Shao, and X. Sun. 2016. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosensors and Bioelectronics 75:411–19. doi:10.1016/j.bios.2015.07.045
  • Jiang, Y., S. Zou, and X. Cao. 2016. Rapid and ultra-sensitive detection of foodborne pathogens by using miniaturized microfluidic devices: a review. Analytical Methods 8 (37):6668–81. doi:10.1039/c6ay01512c
  • Jin, B., S. Wang, M. Lin, Y. Jin, S. Zhang, X. Cui, Y. Gong, A. Li, F. Xu, and T. J. Lu. 2017. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors and Bioelectronics 90 (Supplement C):525–33. doi:10.1016/j.bios.2016.10.029
  • Jin, Z., W. Guan, C. Liu, T. Xue, Q. Wang, W. Zheng, and X. Cui. 2016. A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film. Applied Surface Science 377:207–12. doi:10.1016/j.apsusc.2016.03.123
  • Justino, C. I., A. C. Freitas, R. Pereira, A. C. Duarte, and T. A. R. Santos. 2015. Recent developments in recognition elements for chemical sensors and biosensors. TRAC Trends in Analytical Chemistry 68:2–17. doi:10.1016/j.trac.2015.03.006
  • Kang, D.-K., M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao. 2014. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nature Communications 5:5427. doi:10.1038/ncomms6427
  • Karsunke, X. Y. Z., R. Niessner, and M. Seidel. 2009. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Analytical and Bioanalytical Chemistry 395 (6):1623. doi:10.1007/s00216-009-2905-7
  • Karunakaran, C., K. Bhargava, and R. Benjamin. 2015. Biosensors and bioelectronics. Tamil Nadu, India: Elsevier.
  • Karunakaran, C., R. Rajkumar, and K. Bhargava. 2015. Chapter 1 - introduction to biosensors. In Biosensors and bioelectronics, ed. C. Karunakaran, K. Bhargava, and R. Benjamin, 1–68. Tamil Nadu, India: Elsevier.
  • Khater, M., A. de la Escosura-Muñiz, and A. Merkoçi. 2017. Biosensors for plant pathogen detection. Biosensors and Bioelectronics 93 (Supplement C):72–86. doi:10.1016/j.bios.2016.09.091
  • Kim, G.-Y., and A. Son. 2010. Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157:H7 quantification. Analytica Chimica Acta 677 (1):90–96. doi:10.1016/j.aca.2010.07.046
  • Kim, T.-H., J. Park, C.-J. Kim, and Y.-K. Cho. 2014. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Analytical Chemistry 86 (8):3841–48. doi:10.1021/ac403971h
  • Koubová, V., E. Brynda, L. Karasová, J. Škvor, J. Homola, J. Dostálek, P. Tobiška, and J. Rošický. 2001. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors and Actuators B: Chemical 74 (1):100–05. doi:10.1016/s0925-4005(00)00717-6
  • Kozitsina, A., T. Svalova, N. Malysheva, Y. Glazyrina, and A. Matern. 2016. A new enzyme-free electrochemical immunoassay for Escherichia coli detection using magnetic nanoparticles. Analytical Letters 49 (2):245–57. doi:10.1080/00032719.2015.1072824
  • Kramer, M. F., and D. V. Lim. 2004. A rapid and automated fiber optic–based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds. Journal of Food Protection 67 (1):46–52. doi:10.4315/0362-028x-67.1.46
  • Kricka, L. J., and G. H. Thorpe. 1983. Chemiluminescent and bioluminescent methods in analytical chemistry. A review. Analyst 108 (1292):1274–96. doi:10.1039/an9830801274
  • Kumar, M. S., S. Ghosh, S. Nayak, and A. P. Das. 2016. Recent advances in biosensor based diagnosis of urinary tract infection. Biosensors and Bioelectronics 80:497–510. doi:10.1016/j.bios.2016.02.023
  • Kurt, H., M. Yüce, B. Hussain, and H. Budak. 2016. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosensors and Bioelectronics 81 (Supplement C):280–86. doi:10.1016/j.bios.2016.03.005
  • Kwon, D., S. Lee, M. M. Ahn, I. S. Kang, K.-H. Park, and S. Jeon. 2015. Colorimetric detection of pathogenic bacteria using platinum-coated magnetic nanoparticle clusters and magnetophoretic chromatography. Analytica Chimica Acta 883 (Supplement C):61–66. doi:10.1016/j.aca.2015.04.044
  • Langer, V., R. Niessner, and M. Seidel. 2011. Stopped-flow microarray immunoassay for detection of viable E. coli by use of chemiluminescence flow-through microarrays. Analytical and Bioanalytical Chemistry 399 (3):1041–50. doi:10.1007/s00216-010-4414-0
  • Lee, J. W., D. Lee, Y. T. Kim, E. Y. Lee, D. H. Kim, and T. S. Seo. 2017. Low-cost and facile fabrication of a paper-based capillary electrophoresis microdevice for pathogen detection. Biosensors and Bioelectronics 91:388–92. doi:10.1016/j.bios.2016.12.053
  • Lee, K., W. S. Lee, A. R. Hwang, J. Moon, T. Kang, K. Park, and J. Jeong. 2017. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Analyst 143:332–8. doi:10.1039/c7an01384a
  • Leonard, P., S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, and R. O’Kennedy. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology 32 (1):3–13. doi:10.1016/s0141-0229(02)00232-6
  • Leung, A., P. M. Shankar, and R. Mutharasan. 2007. A review of fiber-optic biosensors. Sensors and Actuators B: Chemical 125 (2):688–703. doi:10.1016/j.snb.2007.03.010
  • Li, C.-Z., K. Vandenberg, S. Prabhulkar, X. Zhu, L. Schneper, K. Methee, C. J. Rosser, and E. Almeide. 2011. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosensors and Bioelectronics 26 (11):4342–48. doi:10.1016/j.bios.2011.04.035
  • Li, K., J. Huang, G. Shi, W. Zhang, and L. Jin. 2011. A sensitive nanoporous gold-based electrochemical DNA biosensor for Escherichia coli detection. Analytical Letters 44 (16):2559–70. doi:10.1080/00032719.2011.553004
  • Li, Y., X. Yan, X. Feng, J. Wang, W. Du, Y. Wang, P. Chen, L. Xiong, and B.-F. Liu. 2014. Agarose-based microfluidic device for point-of-care concentration and detection of pathogen. Analytical Chemistry 86 (21):10653–59. doi:10.1021/ac5026623
  • Li, Z., H. Yang, L. Sun, H. Qi, Q. Gao, and C. Zhang. 2015. Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes. Sensors and Actuators B: Chemical 210 (Supplement C):468–74. doi:10.1016/j.snb.2015.01.011
  • Ligler, F. S., K. E. Sapsford, J. P. Golden, L. C. Shriver-Lake, C. R. Taitt, M. A. Dyer, S. Barone, and C. J. Myatt. 2007. The array biosensor: portable, automated systems. Analytical Sciences 23 (1):5–10. doi:10.2116/analsci.23.5
  • Lim, D. V., J. M. Simpson, E. A. Kearns, and M. F. Kramer. 2005. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews 18 (4):583–607. doi:10.1128/cmr.18.4.583-607.2005
  • Liu, C., F. Meng, W. Zheng, T. Xue, Z. Jin, Z. Wang, and X. Cui. 2016. Plasmonic ZnO nanorods/Au substrates for protein microarrays with high sensitivity and broad dynamic range. Sensors and Actuators B: Chemical 228:231–36. doi:10.1016/j.snb.2016.01.019
  • Liu, H., F. Zhan, F. Liu, M. Zhu, X. Zhou, and D. Xing. 2014. Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosensors and Bioelectronics 62 (Supplement C):38–46. doi:10.1016/j.bios.2014.06.020
  • Liu, J., Z. Cao, and Y. Lu. 2009. Functional nucleic acid sensors. Chemical Reviews 109 (5):1948–98. doi:10.1021/cr030183i
  • Liu, T., Y. Zhao, Z. Zhang, P. Zhang, J. Li, R. Yang, C. Yang, and L. Zhou. 2014. A fiber optic biosensor for specific identification of dead Escherichia coli O157:H7. Sensors and Actuators B: Chemical 196 (Supplement C):161–67. doi:10.1016/j.snb.2014.02.003
  • Liu, X., Y. Hu, S. Zheng, Y. Liu, Z. He, and F. Luo. 2016. Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis. Sensors and Actuators B: Chemical 230:191–98. doi:10.1016/j.snb.2016.02.043
  • Liu, X., M. Marrakchi, D. Xu, H. Dong, and S. Andreescu. 2016. Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosensors and Bioelectronics 80:9–16. doi:10.1016/j.bios.2016.01.041
  • Llorent-Martínez, E. J., J. Jiménez-López, I. Delgado-Blanca, P. Ortega-Barrales, and A. Ruiz-Medina. 2013. Sequential injection analysis of ciclopirox olamine using lanthanide-sensitized luminescence detection. Analytical Letters 46 (11):1816–25. doi:10.1080/00032719.2012.703274
  • López-Serrano, A., R. M. Olivas, J. S. Landaluze, and C. Cámara. 2014. Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Analytical Methods 6 (1):38–56. doi:10.1039/c3ay40517f
  • Luo, X., and J. J. Davis. 2013. Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews 42 (13):5944–62. doi:10.1039/c3cs60077g
  • Martínez, M., A. Hilding-Ohlsson, A. A. Viale, and E. Cortón. 2007. Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism. Journal of Biochemical and Biophysical Methods 70 (3):455–64. doi:10.1016/j.jbbm.2006.11.001
  • Mathews, S. T., E. P. Plaisance, and T. Kim. 2009. Imaging systems for westerns: chemiluminescence vs. infrared detection. In Protein blotting and detection: methods and protocols, ed. B. T. Kurien and R. H. Scofield, 499–513. Totowa, NJ: Humana Press.
  • Mattiasson, B., and L. Ye. 2015. Molecularly imprinted polymers in biotechnology. Lund, Sweden: Springer.
  • McMeekin, T. A. 2003. Detecting pathogens in food. Cornwall, England: Elsevier.
  • Melaine, F., M. Saad, S. Faucher, and M. Tabrizian. 2017. Selective and high dynamic range assay format for multiplex detection of pathogenic Pseudomonas aeruginosa, Salmonella typhimurium, and Legionella pneumophila RNAs using surface plasmon resonance imaging. Analytical Chemistry 89 (14):7802–07. doi:10.1021/acs.analchem.7b01942
  • Mendonca, M., N. L. Conrad, F. R. Conceicao, A. N. Moreira, W. P. da Silva, J. A. Aleixo, and A. K. Bhunia. 2012. Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiology 12 (1):275. doi:10.1186/1471-2180-12-275
  • Miao, T., Z. Wang, S. Li, and X. Wang. 2011. Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchimica Acta 172 (3):431–37. doi:10.1007/s00604-010-0505-z
  • Mikaelyan, M. V., G. G. Poghosyan, O. D. Hendrickson, B. B. Dzantiev, and V. K. Gasparyan. 2017. Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: A simple photometric assay. Analytica Chimica Acta 981 (Supplement C):80–85. doi:10.1016/j.aca.2017.05.022
  • Miranda, O. R., X. Li, L. Garcia-Gonzalez, Z.-J. Zhu, B. Yan, U. H. F. Bunz, and V. M. Rotello. 2011. Colorimetric bacteria sensing using a supramolecular enzyme–nanoparticle biosensor. Journal of the American Chemical Society 133 (25):9650–53. doi:10.1021/ja2021729
  • Nakharuthai, C., N. Areechon, and P. Srisapoome. 2016. Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria. Developmental & Comparative Immunology 59:207–28. doi:10.1016/j.dci.2016.02.005
  • Nanduri, V., I. B. Sorokulova, A. M. Samoylov, A. L. Simonian, V. A. Petrenko, and V. Vodyanoy. 2007. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosensors and Bioelectronics 22 (6):986–92. doi:10.1016/j.bios.2006.03.025
  • Oh, B.-K., Y.-K. Kim, K. W. Park, W. H. Lee, and J.-W. Choi. 2004. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosensors and Bioelectronics 19 (11):1497–504. doi:10.1016/j.bios.2003.12.009
  • Ohk, S.-H., and A. K. Bhunia. 2013. Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiology 33 (2):166–71. doi:10.1016/j.fm.2012.09.013
  • Ozhukil Valappil, M., V. K. Pillai, and S. Alwarappan. 2017. Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Applied Materials Today 9 (Supplement C):350–71. doi:10.1016/j.apmt.2017.09.002
  • Pagán, M., D. Suazo, N. del Toro, and K. Griebenow. 2015. A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor. Biosensors and Bioelectronics 64:138–46. doi:10.1016/j.bios.2014.08.072
  • Pal, M., S. Lee, D. Kwon, J. Hwang, H. Lee, S. Hwang, and S. Jeon. 2017. Direct immobilization of antibodies on Zn-doped Fe3O4 nanoclusters for detection of pathogenic bacteria. Analytica Chimica Acta 952 (Supplement C):81–87. doi:10.1016/j.aca.2016.11.041
  • Palchetti, I., and M. Mascini. 2008. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Analytical and Bioanalytical Chemistry 391 (2):455–71. doi:10.1007/s00216-008-1876-4
  • Park, B. H., S. J. Oh, J. H. Jung, G. Choi, J. H. Seo, E. Y. Lee, and T. S. Seo. 2017. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosensors and Bioelectronics 91:334–40. doi:10.1016/j.bios.2016.11.063
  • Perumal, V., and U. Hashim. 2014. Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine 12 (1):1–15. doi:10.1016/j.jab.2013.02.001
  • Quinn, J. G. 1999. ‘Real-time’ biomolecular interaction analysis: novel applications and developments. Dublin, Ireland: Dublin City University.
  • Ragavan, K., N. K. Rastogi, and M. Thakur. 2013. Sensors and biosensors for analysis of bisphenol-A. TRAC Trends in Analytical Chemistry 52:248–60. doi:10.1016/j.trac.2013.09.006
  • Ramström, O., K. Skudar, J. Haines, P. Patel, and O. Brüggemann. 2001. Food analyses using molecularly imprinted polymers. Journal of Agricultural and Food Chemistry 49 (5):2105–14. doi:10.1021/jf001444h
  • Ríos-Corripio, M. A., L. S. Arcila-Lozano, B. E. Garcia-Perez, M. E. Jaramillo-Flores, A. D. Hernández-Pérez, A. Carlos-Martínez, M. Rosales-Perez, and M. Rojas-López. 2016. Fluorescent gold nanoparticle-based bioconjugate for the detection of Salmonella. Analytical Letters 49 (12):1862–73. doi:10.1080/00032719.2015.1128944
  • Roda, A., M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni. 2016. Progress in chemical luminescence-based biosensors: A critical review. Biosensors and Bioelectronics 76:164–79. doi:10.1016/j.bios.2015.06.017
  • Roda, A., P. Pasini, M. Guardigli, M. Baraldini, M. Musiani, and M. Mirasoli. 2000. Bio-and chemiluminescence in bioanalysis. Fresenius’ Journal of Analytical Chemistry 366 (6–7):752–59. doi:10.1007/s002160051569
  • Ronkainen, N. J., H. B. Halsall, and W. R. Heineman. 2010. Electrochemical biosensors. Chemical Society Reviews 39 (5):1747–63. doi:10.1039/b714449k
  • Saha, K., S. S. Agasti, C. Kim, X. Li, and V. M. Rotello. 2012. Gold nanoparticles in chemical and biological sensing. Chemical Reviews 112 (5):2739–79. doi:10.1021/cr2001178
  • Sanvicens, N., C. Pastells, N. Pascual, and M. P. Marco. 2009. Nanoparticle-based biosensors for detection of pathogenic bacteria. TRAC Trends in Analytical Chemistry 28 (11):1243–52. doi:10.1016/j.trac.2009.08.002
  • Scallan, E., R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, M.-A. Widdowson, S. L. Roy, J. L. Jones, and P. M. Griffin. 2011. Foodborne illness acquired in the united states—major pathogens. Emerging Infectious Diseases 17 (1):7–15. doi:10.3201/eid1701.09-1101p1
  • Schuster, G. B. 1979. Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism. Accounts of Chemical Research 12 (10):366–73. doi:10.1021/ar50142a003
  • Shangguan, J., Y. Li, D. He, X. He, K. Wang, Z. Zou, and H. Shi. 2015. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst 140 (13):4489–97. doi:10.1039/c5an00535c
  • Sharma, H., and R. Mutharasan. 2013. Review of biosensors for foodborne pathogens and toxins. Sensors and Actuators B: Chemical 183:535–49. doi:10.1016/j.snb.2013.03.137
  • Sheikhzadeh, E., M. Chamsaz, A. P. F. Turner, E. W. H. Jager, and V. Beni. 2016. Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosensors and Bioelectronics 80:194–200. doi:10.1016/j.bios.2016.01.057
  • Shi, D., J. Huang, Z. Chuai, D. Chen, X. Zhu, H. Wang, J. Peng, H. Wu, Q. Huang, and W. Fu. 2014. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor. Biosensors and Bioelectronics 62 (Supplement C):280–87. doi:10.1016/j.bios.2014.06.066
  • Shi, J., C. Chan, Y. Pang, W. Ye, F. Tian, J. Lyu, Y. Zhang, and M. Yang. 2015. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosensors and Bioelectronics 67:595–600. doi:10.1016/j.bios.2014.09.059
  • Shimabuku, Q. L., F. S. Arakawa, M. Fernandes Silva, P. Ferri Coldebella, T. Ueda-Nakamura, M. R. Fagundes-Klen, and R. Bergamasco. 2017. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles. Environmental Technology 38 (16):2058–69. doi:10.1080/09593330.2016.1245361
  • Shin, H. H., J. H. Seo, C. S. Kim, B. H. Hwang, and H. J. Cha. 2016. Hybrid microarray based on double biomolecular markers of DNA and carbohydrate for simultaneous genotypic and phenotypic detection of cholera toxin-producing Vibrio cholerae. Biosensors and Bioelectronics 79:398–405. doi:10.1016/j.bios.2015.12.073
  • Singh, A., D. Arutyunov, M. T. McDermott, C. M. Szymanski, and S. Evoy. 2011. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136 (22):4780–86. doi:10.1039/c1an15547d
  • Stratis-Cullum, D. N., G. D. Griffin, J. Mobley, and T. Vo-Dinh. 2008. Intensified biochip system using chemiluminescence for the detection of Bacillus globigii spores. Analytical and Bioanalytical Chemistry 391 (5):1655–60. doi:10.1007/s00216-008-1835-0
  • Sun, J., F. Pi, J. Ji, H. Lei, Z. Gao, Y. Zhang, J. D. Habimana, Z. Li, and X. Sun. 2018. Ultrasensitive “FRET-SEF” probe for sensing and imaging MicroRNAs in living cells based on gold nanoconjugates. Analytical Chemistry 90 (5):3099–108. doi:10.1021/acs.analchem.7b04051
  • Sung, Y. J., H.-J. Suk, H. Y. Sung, T. Li, H. Poo, and M.-G. Kim. 2013. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosensors and Bioelectronics 43 (Supplement C):432–39. doi:10.1016/j.bios.2012.12.052
  • Tait, E., J. D. Perry, S. P. Stanforth, and J. R. Dean. 2014. Bacteria detection based on the evolution of enzyme-generated volatile organic compounds: Determination of Listeria monocytogenes in milk samples. Analytica Chimica Acta 848 (Supplement C):80–87. doi:10.1016/j.aca.2014.07.029
  • Tan, A., C. Lim, S. Zou, Q. Ma, and Z. Gao. 2016. Electrochemical nucleic acid biosensors: from fabrication to application. Analytical Methods 8 (26):5169–89. doi:10.1039/c6ay01221c
  • Tanious, F. A., B. Nguyen, and W. D. Wilson. 2008. Biosensor‐surface plasmon resonance methods for quantitative analysis of biomolecular interactions. Methods in Cell Biology 84:53–77.
  • Thust, M., M. J. Schöning, P. Schroth, Ü. Malkoc, C. Dicker, A. Steffen, P. Kordos, and H. Lüth. 1999. Enzyme immobilisation on planar and porous silicon substrates for biosensor applications. Journal of Molecular Catalysis B: Enzymatic 7 (1):77–83. doi:10.1016/s1381-1177(99)00023-5
  • Tiposoth, P., S. Khamsakhon, N. Ketsub, T. Pongtharangkul, I. Takashima, A. Ojida, I. Hamachi, and J. Wongkongkatep. 2015. Rapid and quantitative fluorescence detection of pathogenic spore-forming bacteria using a xanthene-Zn(II) complex chemosensor. Sensors and Actuators B: Chemical 209 (Supplement C):606–12. doi:10.1016/j.snb.2014.11.113
  • Tiu, B. D. B., and R. C. Advincula. 2015. Plasmonics and templated systems for bioapplications. Rendiconti Lincei 26 (2):143–60. doi:10.1007/s12210-015-0416-3
  • Tokel, O., U. H. Yildiz, F. Inci, N. G. Durmus, O. O. Ekiz, B. Turker, C. Cetin, S. Rao, K. Sridhar, and N. Natarajan. 2015. Portable microfluidic integrated plasmonic platform for pathogen detection. Scientific Reports 5:9152. doi:10.1038/srep09152
  • Tokonami, S., Y. Nakadoi, M. Takahashi, M. Ikemizu, T. Kadoma, K. Saimatsu, L. Q. Dung, H. Shiigi, and T. Nagaoka. 2013. Label-free and selective bacteria detection using a film with transferred bacterial configuration. Analytical Chemistry 85 (10):4925–29.
  • Touhami, A. 2014. Biosensors and nanobiosensors: design and applications. Nanomedicine 15:374–403.
  • Tripathi, S. M., W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob. 2012. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosensors and Bioelectronics 35 (1):308–12. doi:10.1016/j.bios.2012.03.006
  • Turner, A., and J. Newman. 1998. MK43 OAL, UK. Biosensors for Food Analysis 167:13.
  • Vaisocherová-Lísalová, H., I. Víšová, M. L. Ermini, T. Špringer, X. C. Song, J. Mrázek, J. Lamačová, N. Scott Lynn, P. Šedivák, and J. Homola. 2016. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics 80 (Supplement C):84–90. doi:10.1016/j.bios.2016.01.040
  • Varshney, M., and Y. Li. 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosensors and Bioelectronics 22 (11):2408–14. doi:10.1016/j.bios.2006.08.030
  • Velusamy, V., K. Arshak, O. Korostynska, K. Oliwa, and C. Adley. 2010. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances 28 (2):232–54. doi:10.1016/j.biotechadv.2009.12.004
  • Wang, B., Q. Wang, Z. Cai, and M. Ma. 2015. Simultaneous, rapid and sensitive detection of three food-borne pathogenic bacteria using multicolor quantum dot probes based on multiplex fluoroimmunoassay in food samples. LWT -- Food Science and Technology 61 (2):368–76. doi:10.1016/j.lwt.2014.12.016
  • Wang, R., Y. Xu, Y. Jiang, N. Chuan, X. Su, and J. Ji. 2014. Sensitive quantification and visual detection of bacteria using CdSe/ZnS@ SiO 2 nanoparticles as fluorescent probes. Analytical Methods 6 (17):6802–08. doi:10.1039/c4ay01257g
  • Wang, R., Y. Xu, T. Zhang, and Y. Jiang. 2015. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Analytical Methods 7 (5):1701–06. doi:10.1039/c4ay02880e
  • Wang, X., Y. Huang, S. Wu, N. Duan, B. Xu, and Z. Wang. 2016. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. International Journal of Food Microbiology 237 (Supplement C):172–79. doi:10.1016/j.ijfoodmicro.2016.08.028
  • Wang, X., X. Lu, and J. Chen. 2014. Development of biosensor technologies for analysis of environmental contaminants. Trends in Environmental Analytical Chemistry 2:25–32. doi:10.1016/j.teac.2014.04.001
  • Wang, Y., Z. Ye, C. Si, and Y. Ying. 2013. Monitoring of Escherichia coli O157:H7 in food samples using lectin based surface plasmon resonance biosensor. Food Chemistry 136 (3):1303–08. doi:10.1016/j.foodchem.2012.09.069
  • Wang, Z., N. Duan, J. Li, J. Ye, S. Ma, and G. Le. 2011. Ultrasensitive chemiluminescent immunoassay of Salmonella with silver enhancement of nanogold labels. Luminescence 26 (2):136–41. doi:10.1002/bio.1196
  • Wang, Z., J. Li, J. Zhao, N. Duan, H. Sun, and Y. Shi. 2011. Ultrasensitive chemiluminescent detection of Salmonella with DNA hybridization and silver amplification of nanogold labels. Analytical Letters 44 (6):1063–76. doi:10.1080/00032719.2010.511737
  • Warriner, K., S. M. Reddy, A. Namvar, and S. Neethirajan. 2014. Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends in Food Science & Technology 40 (2):183–99. doi:10.1016/j.tifs.2014.07.008
  • Waswa, J., J. Irudayaraj, and C. DebRoy. 2007. Direct detection of E. Coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT -- Food Science and Technology 40 (2):187–92. doi:10.1016/j.lwt.2005.11.001
  • Wu, T.-F., Y.-C. Chen, W.-C. Wang, A. S. Kucknoor, C.-J. Lin, Y.-H. Lo, C.-W. Yao, and I. Lian. 2017. Rapid waterborne pathogen detection with mobile electronics. Sensors 17 (6):1348. doi:10.3390/s17061348
  • Xu, L., Z. Lu, L. Cao, H. Pang, Q. Zhang, Y. Fu, Y. Xiong, Y. Li, X. Wang, J. Wang, et al. 2017. In-field detection of multiple pathogenic bacteria in food products using a portable fluorescent biosensing system. Food Control 75 (Supplement C):21–28. doi:10.1016/j.foodcont.2016.12.018
  • Xu, Y., H. Wang, C. Luan, Y. Liu, B. Chen, and Y. Zhao. 2018. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosensors and Bioelectronics 100 (Supplement C):404–10. doi:10.1016/j.bios.2017.09.032
  • Xue, T., X. Cui, W. Guan, Q. Wang, C. Liu, H. Wang, K. Qi, D. J. Singh, and W. Zheng. 2014. Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing. Biosensors and Bioelectronics 58:374–79. doi:10.1016/j.bios.2014.03.002
  • Yamada, K., W. Choi, I. Lee, B.-K. Cho, and S. Jun. 2016. Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor. Biosensors and Bioelectronics 77:137–43. doi:10.1016/j.bios.2015.09.030
  • Yang, J.-J., Z.-F. Zhang, and G.-Q. Yan. 2017. Facile detection of microRNA based on phosphorescence resonance energy transfer and duplex-specific nuclease-assisted signal amplification. Analytical Biochemistry 539 (Supplement C):127–33. doi:10.1016/j.ab.2017.10.021
  • Yang, K., H. Peretz-Soroka, Y. Liu, and F. Lin. 2016. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab on a Chip 16 (6):943–58. doi:10.1039/c5lc01524c
  • Yin, H.-S., Y.-L. Zhou, and S.-Y. Ai. 2009. Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection. Journal of Electroanalytical Chemistry 626 (1):80–88. doi:10.1016/j.jelechem.2008.11.004
  • Yoo, S. M., and S. Y. Lee. 2016. Optical biosensors for the detection of pathogenic microorganisms. Trends in Biotechnology 34 (1):7–25. doi:10.1016/j.tibtech.2015.09.012
  • Yu, J., Y. Zhang, Y. Zhang, H. Li, H. Yang, and H. Wei. 2016. Sensitive and rapid detection of staphylococcus aureus in milk via cell binding domain of lysin. Biosensors and Bioelectronics 77:366–71. doi:10.1016/j.bios.2015.09.058
  • Zamani, P., R. H. Sajedi, S. Hosseinkhani, M. Zeinoddini, and B. Bakhshi. 2016. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway. Biosensors and Bioelectronics 79:213–19. doi:10.1016/j.bios.2015.12.018
  • Zhang, P., H. Liu, S. Ma, S. Men, Q. Li, X. Yang, H. Wang, and A. Zhang. 2016. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA. Biosensors and Bioelectronics 80:538–42. doi:10.1016/j.bios.2016.02.031
  • Zhang, W., S. Guo, W. S. P. Carvalho, Y. Jiang, and M. J. Serpe. 2016. Portable point-of-care diagnostic devices. Analytical Methods 8 (44):7847–67. doi:10.1039/c6ay02158a
  • Zhang, W., Y. Han, X. Chen, X. Luo, J. Wang, T. Yue, and Z. Li. 2017. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chemistry 232:145–54. doi:10.1016/j.foodchem.2017.03.156
  • Zhou, H., D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner, and C. Haisch. 2014. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Analytical Chemistry 86 (3):1525–33. doi:10.1021/ac402935p
  • Zhou, Y., H. Zhang, B. Chen, and H. Wang. 2012. A novel hydrogen peroxide sensor based on immobilization of haemoglobin on nano-TiO2/DTAB composite film. Biocatalysis and Biotransformation 30 (4):377–84. doi:10.3109/10242422.2012.701622
  • Zhu, H., U. Sikora, and A. Ozcan. 2012. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137 (11):2541–44. doi:10.1039/c2an35071h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.