136
Views
8
CrossRef citations to date
0
Altmetric
Bioanalytical

Triple Amplification Strategy for the Improved Efficiency of a Microplate-Based Assay for the Chemiluminescent Detection of DNA

&
Pages 1352-1362 | Received 13 Sep 2018, Accepted 17 Oct 2018, Published online: 05 Apr 2019

References

  • Abu-Salah, K. M., M. M. Zourob, F. Mouffouk, S. A. Alrokayan, M. A. Alaamery, and A. A. Ansari. 2015. DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors 15 (6):14539–14568. doi:10.3390/s150614539
  • Adamski, M. G., P. Gumann, and A. E. Baird. 2014. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. PLoS One 9 (8):e103917. doi:10.1371/journal.pone.0103917
  • Bodulev, O. L., A. V. Gribas, and I. Y. Sakharov. 2018. Microplate chemiluminescent assay for HBV DNA detection using 3-(10′-phenothiazinyl)propionic acid/N-morpholinopyridine pair as enhancer of HRP-catalyzed chemiluminescence. Analytical Biochemistry 543:33–36. doi:10.1016/j.ab.2017.11.026
  • Cai, S., C. Lau, and J. Lu. 2011. System for simple and selective detection of protein via base stacking-dependent DNA hybridization event. Analytical Chemistry 83 (15):5844–5850. doi:10.1021/ac201054m
  • Chen, L., S. Lee, M. Lee, C. Lim, J. Choo, J. Y. Park, S. Lee, S.-W. Joo, K.-H. Lee, and Y.-W. Choi. 2008. DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes. Biosensors and Bioelectronics 23 (12):1878–1882. doi:10.1016/j.bios.2008.02.013
  • Cheung, Y.-W., R. M. Dirkzwager, W.-C. Wong, J. Cardoso, J. D. Neves Costa, and J. A. Tanner. 2018. Aptamer-mediated plasmodium-specific diagnosis of malaria. Biochimie 145:131–136. doi:10.1016/j.biochi.2017.10.017
  • Chiadò, A., C. Novara, A. Lamberti, F. Geobaldo, F. Giorgis, and P. Rivolo. 2016. Immobilization of oligonucleotides on metal-dielectric nanostructures for miRNA detection. Analytical Chemistry 88 (19):9554–9563. doi:10.1021/acs.analchem.6b02186
  • Deng, X., C. Wang, Y. Gao, J. W. Li, W. Wen, X. H. Zhang, and S. F. Wang. 2018. Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosensors and Bioelectronics 105:211–217. doi:10.1016/j.bios.2018.01.039
  • Du, Y., and S. Dong. 2017. Nucleic acid biosensors: recent advances and perspectives. Analytical Chemistry 89 (1):189–215. doi:10.1021/acs.analchem.6b04190
  • Jiang, J. J., X. Y. Lin, D. Ding, and G. W. Diao. 2018. Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@beta-CD nanocomposites. Biosensors and Bioelectronics 114:37–43. doi:10.1016/j.bios.2018.04.035
  • Juskowiak, B. 2011. Nucleic acid-based fluorescent probes and their analytical potential. Analytical and Bioanalytical Chemistry 399 (9):3157–3176. doi:10.1007/s00216-010-4304-5
  • Holzinger, M., Goff, A. L., and S. Cosnier. 2014. Nanomaterials for biosensing applications: a review. Frontiers in Chemistry 2:63. doi:10.3389/fchem.2014.00063
  • Kawai, S., S. Maekawajiri, and A. Yamane. 1993. A simple method of detecting amplified DNA with immobilized probes on microtiter wells. Analytical Biochemistry 209 (1):63–69. doi:10.1006/abio.1993.1083
  • Kulmacz, R. J. 1986. Prostaglandin H synthase and hydroperoxides: peroxidase reaction and inactivation kinetics. Archives of Biochemistry and Biophysics 249 (2):273–285. doi:10.1016/0003-9861(86)90003-2
  • Le Goff, G. C., B. P. Corgier, C. A. Mandon, G. De Crozals, C. Chaix, L. J. Blum, and C. A. Marquette. 2012. Impact of immobilization support on colorimetric microarrays performances. Biosensors and Bioelectronics 35 (1):94–100. doi:10.1016/j.bios.2012.02.025
  • Li, D., Y. Cui, C. Morisseau, S. J. Gee, C. S. Bever, X. Liu, J. Wu, B. D. Hammock, and Y. Ying. 2017. Nanobody based immunoassay for human soluble epoxide hydrolase detection using polymeric horseradish peroxidase (polyHRP) for signal enhancement: the rediscovery of polyHRP?. Analytical Chemistry 89 (11):6248–6256. doi:10.1021/acs.analchem.7b01247
  • Ling, K., H. Jiang, X. Huang, Y. Li, J. Lin, and F.-R. Li. 2018. Direct chemiluminescence detection of circulating microRNAs in serum samples using a single-strand specific nuclease-distinguishing nucleic acid hybrid system. Chemical Communications 54 (15):1909–1912. doi:10.1039/c7cc09087k
  • Liu, J., Z. Cao, and Y. Lu. 2009. Functional nucleic acid sensors. Chemical Reviews 109 (5):1948–1998. doi:10.1021/cr030183i
  • Lord, C. J., and A. Ashworth. 2012. The DNA damage response and cancer therapy. Nature 481 (7381):287–294. doi:10.1038/nature10760
  • Luo, J., Y. Xu, J. Huang, S. Zhang, Q. Xu, and J. He. 2018. Enzyme-free amplified detection of circulating microRNA by making use of DNA circuits, a DNAzyme, and a catalytic hairpin assembly. Microchimica Acta 185:38–43. doi:10.1007/s00604-017-2565-9
  • Marzocchi, E., S. Grilli, L. Della Ciana, L. Prodi, M. Mirasoli, and A. Roda. 2008. Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. Analytical of Biochemistry 377 (2):189–194. doi:10.1016/j.ab.2008.03.020
  • Mazlan, N.-F., L. L. Tan, N. H. A. Karim, L. Y. Heng, and M. I. H. Reza. 2017. Optical biosensing using newly synthesized metal salphencomplexes: A potential DNA diagnostic tool. Sensors and Actuators B Chemistry 242:176–188. doi:10.1016/j.snb.2016.11.032
  • Petralia, S., T. Cosentino, F. Sinatra, M. Favetta, P. Fiorenza, C. Bongiorno, E. L. Sciuto, S. Conoci, and S. Libertino. 2017. Silicon nitride surfaces as active substrate for electrical DNAbiosensors. Sensors and Actuators B Chemistry 252:492–502. doi:10.1016/j.snb.2017.06.023
  • Qing, T., D. He, X. He, K. Wang, F. Xu, L. Wen, J. Shangguan, Z. Mao, and Y. Lei. 2016. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Analytical and Bioanalytical Chemistry 408:2793–2811. doi:10.1007/s00216-015-9240-y
  • Roy, D., J.-W. Kwak, W. J. Maeng, H. Kim, and J. W. Park. 2008. Dendron-modified polystyrene microtiter plate: surface characterization with picoforce AFM and influence of spacing between immobilized amyloid beta proteins. Langmuir 24 (24):14296–14305. doi:10.1021/la801872r
  • Sakharov, I. 2018. Microplate chemiluminescent assay for DNA detection using apoperoxidase-oligonucleotide as capture conjugate and HRP-streptavidin signaling system. Sensors 18 (4):1289–1299. doi:10.3390/s18041289
  • Sakharov, I. Y., and M. M. Vdovenko. 2013. Mechanism of action of 4-dialkylaminopyridines as secondary enhancers in enhanced chemiluminescence reaction. Analytical Biochemistry 434 (1):12–14. doi:10.1016/j.ab.2012.10.030
  • Saks, M. J., and J. J. Koehler. 2005. The coming paradigm shift in forensic identification science. Science 309 (5736):892–895. doi:10.1126/science.1111565
  • Sforza, S., R. Corradini, T. Tedeschi, and R. Marchelli. 2011. Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chemical Society Review 40 (1):221–232. doi:10.1039/b907695f
  • Smith, S. J., C. R. Nemr, and O. Kelley. 2017. Chemistry-driven approaches for ultrasensitive nucleic acid detection. Journal of the American Chemical Society 139 (3):1020–1028. doi:10.1021/jacs.6b10850
  • Sun, X., S. Wang, Y. Zhang, Y. Tian, and N. Zhou. 2017. Ultrasensitive detection of DNA based on target-triggered hairpin assembly and exonuclease-assisted recycling amplification. Sensors and Actuators B Chemistry 252:306–312. doi:10.1016/j.snb.2017.06.014
  • Sun, Y., Y. Wang, C. Lau, G. Chen, and J. Lu. 2018. Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs. Talanta 190:248–254. doi:10.1016/j.talanta.2018.07.070
  • Torrente-Rodríguez, R. M., S. Campuzano, V. R.-V. Montiel, J. J. Montoya, and J. M. Pingarrón. 2016. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification. Biosensors and Bioelectronics 86:516–521. doi:10.1016/j.bios.2016.07.003
  • Tort, N., J.-P. Salvador, and M.-P. Marco. 2017. Multimodal plasmonic biosensing nanostructures prepared by DNA-directed immobilization of multifunctional DNA-gold nanoparticles. Biosensors and Bioelectronics 90:13–22. doi:10.1016/j.bios.2016.11.022
  • Vdovenko, M. M., A. S. Demiyanova, T. A. Chemleva, and I. Y. Sakharov. 2012. Optimization of horseradish peroxidase-catalyzed enhanced chemiluminescence reaction by full factorial design. Talanta 94:223–226. doi:10.1016/j.talanta.2012.03.025
  • Ying, N., T. Sun, Z. Chen, G. Song, B. Qi, S. Bu, X. Sun, J. Wan, and Z. Li. 2017. Colorimetric detection of microRNA based hybridization chain reaction for signal amplification and enzyme for visualization. Analytical Biochemistry 528:7–12. doi:10.1016/j.ab.2017.04.007
  • Yuan, J., S. Wu, N. Duan, X. Ma, Y. Xia, J. Chen, Z. Ding, and Z. Wang. 2014. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–168. doi:10.1016/j.talanta.2014.04.013
  • Zhang, H., M. H. Harpster, H. J. Park, P. A. Johnson, and W. C. Wilson. 2011. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles. Analytical Chemistry 83 (1):254–260. doi:10.1021/ac1023843
  • Zhou, W., X. Gao, D. Liu, and X. Chen. 2015. Gold nanoparticles for in vitro diagnostics. Chemical Reviews 115 (19):10575–10636. doi:10.1021/acs.chemrev.5b00100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.