215
Views
2
CrossRef citations to date
0
Altmetric
Liquid Chromatography

Simple, Rapid, and Sensitive Determination of Thiols by Liquid Chromatography with Fluorescence Detection

, , , ORCID Icon &
Pages 1487-1499 | Received 29 Jul 2018, Accepted 11 Nov 2018, Published online: 17 Jan 2019

References

  • Anderson, M. T., J. R. Trudell, D. W. Voehringer, I. M. Tjioe, L. A. Herzenberg, and L. A. Herzenberg. 1999. An improved monobromobimane assay for glutathione utilizing tris-(2-carboxyethyl) phosphine as the reductant. Analytical Biochemistry 272 (1):107–109. doi:10.1006/abio.1999.4153.
  • Balkhair, K. S., and M. A. Ashraf. 2016. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences 23 (1):32–44. doi:10.1016/j.sjbs.2015.09.023.
  • Borra, S., D. E. Featherstone, and S. A. Shippy. 2015. Total cysteine and glutathione determination in hemolymph of individual adult D. melanogaster. Analytica Chimica Acta 853:660–667. doi:10.1016/j.aca.2014.10.012.
  • Bräutigam, A., D. Schaumlöffel, G. J. Krauss, and D. Wesenberg. 2009. Analytical approach for characterization of cadmium-induced thiol peptides—a case study using Chlamydomonas reinhardtii. Analytical and Bioanalytical Chemistry 395 (6):1737–1747. doi:10.1007/s00216-009-2921-7.
  • Bräutigam, A., D. Schaumlöffel, H. Preud’homme, I. Thondorf, and D. Wesenberg. 2011. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. Plant, Cell & Environment 34 (12):2071–2082. doi:10.1111/j.1365-3040.2011.02404.x.
  • Bräutigam, A., D. Wesenberg, H. Preud’homme, and D. Schaumlöffel. 2010. Rapid and simple UPLC-MS/MS method for precise phytochelatin quantification in alga extracts. Analytical and Bioanalytical Chemistry 398 (2):877–883. doi:10.1007/s00216-010-3970-7.
  • Bluemlein, K., A. Raab, and J. Feldmann. 2009. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation. Analytical and Bioanalytical Chemistry 393 (1):357–366. doi:10.1007/s00216-008-2395-z.
  • Burns, J. A., J. C. Butler, J. Moran, and G. M. Whitesides. 1991. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. The Journal of Organic Chemistry 56 (8):2648–2650. doi:10.1021/jo00008a014.
  • Cui, H., Q. Zhu, L. Dong, B. Shan, T. Han, H. Li, and F. Cai. 2017. Speciation of arsenic in rice by ion chromatography with online anion suppression and inductively coupled plasma mass spectrometry. Analytical Letters 50 (6):1040–1048. doi:10.1080/00032719.2016.1203927.
  • Delnomdedieu, M., M. M. Basti, J. D. Otvos, and D. J. Thomas. 1994. Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chemico-Biological Interactions 90 (2):139–155. doi:10.1016/0009-2797(94)90099-X.
  • Getz, E. B., M. Xiao, T. Chakrabarty, R. Cooke, and P. R. Selvin. 1999. A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Analytical Biochemistry 273 (1):73–80. doi:10.1006/abio.1999.4203.
  • Gough, J. D., and W. J. Lees. 2005. Effects of redox buffer properties on the folding of a disulfide-containing protein: dependence upon pH, thiol pKa, and thiol concentration. Journal of Biotechnology 115 (3):279–290. doi:10.1016/j.jbiotec.2004.09.005.
  • Hirata, K., Y. Tsujimoto, T. Namba, T. Ohta, N. Hirayanagi, H. Miyasaka, M. H. Zenk, and K. Miyamoto. 2001. Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta. Journal of Bioscience and Bioengineering 92 (1):24–29. doi:10.1016/S1389-1723(01)80193-6.
  • Ju, X. H., S. R. Tang, Y. Jia, J. K. Guo, Y. Z. Ding, Z. G. Song, and Y. J. Zhao. 2011. Determination and characterization of cysteine, glutathione and phytochelatins (PC2–6) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection. Journal of Chromatography B 879 (20):1717–1724. doi:10.1016/j.jchromb.2011.04.016.
  • Khan, S., Q. Cao, Y. M. Zheng, Y. Z. Huang, and Y. G. Zhu. 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution 152 (3):686–692. doi:10.1016/j.envpol.2007.06.056.
  • Mahdavi, H., A. C. Ulrich, and Y. Liu. 2012. Metal removal from oil sands tailings pond water by indigenous micro-alga. Chemosphere 89 (3):350–354. doi:10.1016/j.chemosphere.2012.04.041.
  • Monahan, F. J., J. B. German, and J. E. Kinsella. 1995. Effect of pH and temperature on protein unfolding and thiol/disulfide interchange reactions during heat-induced gelation of whey proteins. Journal of Agricultural and Food Chemistry 43 (1):46–52. doi:10.1021/jf00049a010.
  • Munoz, L. P., D. Purchase, H. Jones, J. Feldmann, and H. Garelick. 2014. Enhanced determination of As–phytochelatin complexes in Chlorella vulgaris using focused sonication for extraction of water-soluble species. Analytical Methods 6 (3):791–797. doi:10.1039/C3AY41629A.
  • Narukawa, T., E. Matsumoto, T. Nishimura, and A. Hioki. 2015. Reversed phase column HPLC-ICP-MS conditions for arsenic speciation analysis of rice flour. Analytical Sciences 31 (6):521–527. doi:10.2116/analsci.31.521.
  • Nishiyama, J., and T. Kuninori. 1992. Assay of thiols and disulfides based on the reversibility of N-ethylmaleimide alkylation of thiols combined with electrolysis. Analytical Biochemistry 200 (2):230–234. doi:10.1016/0003-2697(92)90457-I.
  • Pawlik-Skowrońska, B., J. Pirszel, R. Kalinowska, and T. Skowroński. 2004. Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquatic Toxicology 70 (3):201–212. doi:10.1016/j.aquatox.2004.09.003.
  • Santarino, I. B., S. C. B. Oliveira, and A. M. Oliveira-Brett. 2012. Protein reducing agents dithiothreitol and tris(2-carboxyethyl)phosphine anodic oxidation. Electrochemistry Communications 23:114–117. doi:10.1016/j.elecom.2012.06.027.
  • Simmons, D. B. D., A. R. Hayward, T. C. Hutchinson, and R. J. N. Emery. 2009. Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction. Analytical and Bioanalytical Chemistry 395 (3):809–817. doi:10.1007/s00216-009-3016-1.
  • Sneller, F. E. C., L. M. van Heerwaarden, P. L. M. Koevoets, R. Vooijs, H. Schat, and J. A. C. Verkleij. 2000. Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane. Journal of Agricultural and Food Chemistry 48 (9):4014–4019. doi:10.1021/jf9903105.
  • Sulaymon, A. H., A. A. Mohammed, and T. J. Al-Musawi. 2013. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research 20 (5):3011–3023. doi:10.1007/s11356-012-1208-2.
  • Thomsen, V., D. Schatzlein, and D. Mercuro. 2003. Limits of detection in spectroscopy. Spectroscopy 18 (12):112–114.
  • Tyagarajan, K., E. Pretzer, and J. E. Wiktorowicz. 2003. Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24 (14):2348–2358. doi:10.1002/elps.200305478.
  • Winterbourn, C. C., and D. Metodiewa. 1999. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biology and Medicine 27 (3–4):322–328. doi:10.1016/S0891-5849(99)00051-9.
  • Wu, Y., and W. X. Wang. 2012. Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. Journal of Hazardous Materials 217–218:271–278. doi:10.1016/j.jhazmat.2012.03.024.
  • Wu, Y., and W. X. Wang. 2014. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton. Aquatic Toxicology 148:122–129. doi:10.1016/j.aquatox.2014.01.005.
  • Wu, Z. Y., C. H. Zhang, J. L. Yan, and Y. Ge. 2013. Separation and quantification of cysteine, glutathione and phytochelatins in rice (Oryza sativa L.) upon cadmium exposure using reverse phase ultra performance liquid chromatography (RP-UPLC) with fluorescence detection. Analytical Methods 5 (21):6147–6152. doi:10.1039/c3ay40849c.
  • Zahler, W. L., and W. W. Cleland. 1968. A specific and sensitive assay for disulfides. The Journal of Biological Chemistry 243 (4):716–719.
  • Zeng, X. W., L. Q. Ma, R. L. Qiu, and Y. T. Tang. 2009. Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environmental and Experimental Botany 66 (2):242–248. doi:10.1016/j.envexpbot.2009.03.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.