336
Views
19
CrossRef citations to date
0
Altmetric
Fluorescence

N, S Co-Doped Carbon Quantum Dots for the Selective and Sensitive Fluorescent Determination of N-Acetyl-l-Cysteine in Pharmaceutical Products and Urine

, , , &
Pages 1711-1731 | Received 17 Nov 2018, Accepted 04 Jan 2019, Published online: 22 Apr 2019

References

  • Cui, X. B., Y. L. Wang, J. Liu, Q. Y. Yang, B. Zhang, Y. Gao, Y. Wang, and G. Y. Lu. 2017. Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions. Sensors and Actuatators, B: Chemical 242:1272–80. doi: 10.1016/j.snb.2016.09.032.
  • Dong, Y., H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, and T. Yu. 2013. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie 52 (30):7800–4. doi: 10.1002/anie.201301114.
  • Fang, B. Y., C. Li, Y. Y. Song, F. Tan, Y. C. Cao, and Y. D. Zhao. 2018. Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells. Biosensors and Bioelectronics 100:41–8. doi: 10.1016/j.bios.2017.08.057.
  • Fong, J. F. Y., S. F. Chin, and S. M. Ng. 2016. A unique “turn-on” fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosensors and Bioelectronics 85:844–52. doi: 10.1016/j.bios.2016.05.087.
  • Garcia-Molina, F., M. J. Penalver, J. N. Rodriguez-Lopez, F. Garcia-Canovas, and J. Tudela. 2005. Enzymatic method with polyphenol oxidase for the determination of cysteine and N-acetylcysteine. Journal of Agricultural and Food Chemistry 53 (16):6183–9. doi: 10.1021/jf050197k.
  • Gatti, R., and R. Morigi. 2017. 1,4-Anthraquinone: A new useful pre-column reagent for the determination of N-acetylcysteine and captopril in pharmaceuticals by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis 143:299–304. doi: 10.1016/j.jpba.2017.06.011.
  • Gong, X., W. Lu, M. C. Paau, Q. Hu, X. Wu, S. Shuang, C. Dong, and M. M. Choi. 2015. Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Analytica Chimica Acta 861:74–84. doi: 10.1016/j.aca.2014.12.045.
  • Gong, X. J., Y. Liu, Z. H. Yang, S. M. Shuang, Z. Y. Zhang, and C. Dong. 2017. An “on-off-on” fluorescent nanoprobe for recognition of chromium (VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Analytica Chimica Acta 968:85–96. doi: 10.1016/j.aca.2017.02.038.
  • Hou, M., X. Y. Yan, and L. Xiong. 2015. Determination of sparfloxacin with CdSe/CdS quantum dots as fluorescent probes. Journal of Luminescense 157:58–62. doi: 10.1016/j.jlumin.2014.08.006.
  • Hou, J. Y., G. J. Dong, Z. B. Tian, J. T. Lu, Q. Q. Wang, S. Y. Ai, and M. L. Wang. 2016. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chemistry 202:81–7. doi: 10.1016/j.foodchem.2015.11.134.
  • Jiang, K., L. Zhang, J. Lu, C. Xu, C. Cai, and H. Lin. 2016. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angewandte Chemie 55 (25):7231–5. doi: 10.1002/anie.201602445.
  • Keyvanfard, M., A. A. Ensafi, H. Karimi-Maleh, and K. Alizad. 2012. Modified multiwalled carbon nanotubes paste electrode as a sensor for the electrocatalytic determination of N-acetylcysteine in the presence of high concentrations of folic acid. Analytical Methods 4 (10):3268–74. doi: 10.1039/c2ay05802b.
  • Li, H., X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. Tsang, X. Yang, and S. T. Lee. 2010. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie 49 (26):4430–4. doi: 10.1002/anie.200906154.
  • Li, Y., Y. Zhao, H. H. Cheng, Y. Hu, G. Q. Shi, L. M. Dai, and L. T. Qu. 2012. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. Journal of the American Chemical Society 134 (1):15–8. doi: 10.1021/ja206030c.
  • Li, C., Y. Q. Xu, L. Sun, J. H. Zheng, J. D. Dai, C. X. Li, and Y. S. Yan. 2018. Convenient determination of sulfamethazine in milk by novel ratiometric fluorescence with carbon and quantum dots with on-site naked-eye detection and low interferences. Analytical Letters 51 (13):2099–113. doi: 10.1080/00032719.2017.1402336.
  • Liao, S., X. Y. Zhao, F. W. Zhu, M. Chen, Z. L. Wu, X. G. Song, H. Yang, and X. Q. Chen. 2018. Novel S, N-doped carbon quantum dot-based “off-on” fluorescent sensor for silver ion and cysteine. Talanta 180:300–8. doi: 10.1016/j.talanta.2017.12.040.
  • Lim, S. Y., W. Shen, and Z. Q. Gao. 2015. Carbon quantum dots and their applications. Chemical Society Reviews 44 (1):362–81. doi:10.1039/c4cs00269e.
  • Liu, S. Q., R. L. Liu, X. Xing, C. Q. Yang, Y. Xu, and D. Q. Wu. 2016. Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron (III) ion. RSC Advances 6 (38):31884–8. doi: 10.1039/C5RA26521E.
  • Liu, H., R. S. Li, J. Zhou, and C. Z. Huang. 2017. Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off-on mechanism. The Analyst 142 (22):4221–7. doi: 10.1039/C7AN01136A.
  • McDermott, G. P., J. M. Terry, X. A. Conlan, N. W. Barnett, and P. S. Francis. 2011. Direct detection of biologically significant thiols and disulfides with manganese (IV) chemiluminescence. Analytical Chemistry 83 (15):6034–9. doi: 10.1021/ac2010668.
  • Minarini, A., S. Ferrari, M. Galletti, N. Giambalvo, D. Perrone, G. Rioli, and G. M. Galeazzi. 2017. N-acetylcysteine in the treatment of psychiatric disorders: Current status and future prospects. Expert Opinion on Drug Metabolism and Toxicology 13 (3):279–92. doi: 10.1080/17425255.2017.1251580.
  • Ottenwa¨Lder, H., and P. Simon. 1987. Differential effect of N-acetylcysteine on excretion of the metals Hg, Cd, Pb and Au. Archives of Toxicology 60 (5):401–2. doi: 10.1007/BF00295763.
  • Pan, D., J. Zhang, Z. Li, C. Wu, X. Yan, and M. Wu. 2010. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chemical Communications 46 (21):3681–3. doi: 10.1039/c000114g.
  • Park, Y., J. Yoo, B. Lim, W. Kwon, and S. W. Rhee. 2016. Improving the functionality of carbon nanodots: Doping and surface functionalization. Journal of Materials Chemistry A 4 (30):11582–603. doi: 10.1039/C6TA04813G.
  • Pawar, S. P., L. S. Walekar, U. R. Kondekar, D. B. Gunjal, A. H. Gore, P. V. Anbhule, S. R. Patil, and G. B. Kolekar. 2016. A quantum dot-based dual fluorescent probe for recognition of mercuric ions and N-acetylcysteine: “on-off-on” approach. Analytical Methods 8 (35):6512–9. doi: 10.1039/C6AY01493C.
  • Roederer, M., S. W. Ela, F. J. T. Staal, L. A. Herzenberg, and L. A. Herzenberg. 1992. N-acetylcysteine: a new approach to anti-HIV therapy. AIDS Research and Human Retroviruses 8 (2):209–17. doi: 10.1089/aid.1992.8.209.
  • Rudašová, M., and M. Masár. 2016. Precise determination of N-acetylcysteine in pharmaceuticals by microchip electrophoresis. Journal of Separation Science 39 (2):433–9. doi: 10.1002/jssc.201501025.
  • Samuni, Y., S. Goldstein, O. M. Dean, and M. Berk. 2013. The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta: General Subjects 1830 (8):4117–29. doi: 10.1016/j.bbagen.2013.04.016.
  • Schneider, J., C. J. Reckmeier, Y. Xiong, M. von Seckendorff, A. S. Susha, P. Kasák, and A. L. Rogach. 2017. Molecular fluorescence in citric acid-based carbon dots. The Journal of Physical Chemistry C 121 (3):2014–22. doi: 10.1021/acs.jpcc.6b12519.
  • Seril, D. N., J. Liao, K. L. K. Ho, C. S. Yang, and G. Y. Yang. 2002. Inhibition of chronic ulcerative colitis-associated colorectal adenocarcinoma development in a murine model by N-acetylcysteine. Carcinogenesis 23 (6):993–1001. doi: 10.1093/carcin/23.6.993.
  • Shahrokhian, S., Z. Kamalzadeh, A. Bezaatpour, and D. M. Boghaei. 2008. Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes. Sensors and Actuators B: Chemical 133 (2):599–606. doi: 10.1016/j.snb.2008.03.034.
  • Sharma, V., N. Kaur, P. Tiwari, A. K. Saini, and S. M. Mobin. 2018. Multifunctional fluorescent “off-on-off” nanosensor for Au3+ and S2− employing N-S co-doped carbon-dots. Carbon 139:393–403. doi: 10.1016/j.carbon.2018.07.004.
  • Su, A. M., Q. M. Zhong, Y. Y. Chen, and Y. L. Wang. 2018. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Analytica Chimica Acta 1023:115–20. doi: 10.1016/j.aca.2018.03.024.
  • Sun, D., R. Ban, P. H. Zhang, G. H. Wu, J. R. Zhang, and J. J. Zhu. 2013. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–34. doi: 10.1016/j.carbon.2013.07.095.
  • Tabaraki, R., and N. Sadeghinejad. 2018. Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off-on fluorescent sensor for mercury (II) and iodide in environmental samples. Ecotoxicology and Environmental Safety 153:101–6. doi: 10.1016/j.ecoenv.2018.01.059.
  • Tian, T., Y. He, Y. L. Ge, and G. W. Song. 2017. One-pot synthesis of boron and nitrogen co-doped carbon dots as the fluorescence probe for dopamine based on the redox reaction between Cr (VI) and dopamine. Sensors and Actuators B: Chemical 240:1265–71. doi: 10.1016/j.snb.2016.09.114.
  • Toussaint, B., C. Pitti, B. Streel, A. Ceccato, P. Hubert, and J. Crommen. 2000. Quantitative analysis of N-acetylcysteine and its pharmacopeial impurities in a pharmaceutical formulation by liquid chromatography-UV detection-mass spectrometry. Journal of Chromatography A 896 (1-2):191–9. doi: 10.1016/S0021-9673(00)00741-X.
  • Wang, H. B., H. D. Zhang, Y. Chen, L. J. Ou, and Y. M. Liu. 2015a. Poly(thymine)-templated fluorescent copper nanoparticles for label-free detection of N-acetylcysteine in pharmaceutical samples. Analytical Methods 7 (15):6372–7. doi: 10.1039/C5AY00841G.
  • Wang, Q., S. R. Zhang, H. G. Ge, G. G. Tian, N. N. Cao, and Y. Q. Li. 2015b. A fluorescent turn-off/on method based on carbon dots as fluorescent probes for the sensitive determination of Pb2+ and pyrophosphate in an aqueous solution. Sensors and Actuators B: Chemical 207:25–33. doi: 10.1016/j.snb.2014.10.096.
  • Wang, H. Y., Q. J. Lu, Y. X. Hou, Y. L. Liu, and Y. Y. Zhang. 2016. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 155:62–9. doi: 10.1016/j.talanta.2016.04.020.
  • Wang, F., Y. L. Xu, S. O. Aderinto, H. P. Peng, H. Zhang, and H. L. Wu. 2017. A new highly effective fluorescent probe for Al3+ ions and its application in practical samples. Journal of Photochemistry and Photobiology A 332:273–82. doi: 10.1016/j.jphotochem.2016.09.004.
  • Wang, Y. Y., L. Mao, W. Liu, F. Ding, P. Zou, X. X. Wang, Q. B. Zhao, and H. B. Rao. 2018. A ratiometric fluorometric and colorimetric probe for the β-thalassemia drug deferiprone based on the use of gold nanoclusters and carbon dots. Mikrochimica Acta 185 (9):442–50. doi:10.1007/s00604-018-2982-4.
  • Wu, H. F., J. H. Jiang, X. T. Gu, and C. L. Tong. 2017a. Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Microchimica Acta 184 (7):2291–8. doi: 10.1007/s00604-017-2201-8.
  • Wu, X., Y. Song, X. Yan, C. Zhu, Y. Ma, D. Du, and Y. Lin. 2017b. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosensors and Bioelectronics 94 :292–7. doi: 10.1016/j.bios.2017.03.010.
  • Xavier, S. S. J., G. Siva, J. Annaraj, A. R. Kim, D. J. Yoo, and G. G. Kumar. 2018. Sensitive and selective turn-off-on fluorescence detection of Hg2+ and cysteine using nitrogen doped carbon nanodots derived from citron and urine. Sensors and Actuators B: Chemical 259:1133–43. doi: 10.1016/j.snb.2017.12.046.
  • Xu, Q., Y. Liu, C. Gao, J. Wei, H. Zhou, Y. Chen, C. Dong, T. S. Sreeprasad, N. Li, and Z. Xia. 2015. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. Journal of Materials Chemistry C 3 (38):9885–93. doi: 10.1039/C5TC01912E.
  • Xu, Q., T. Kuang, Y. Liu, L. Cai, X. Peng, T. Sreenivasan Sreeprasad, P. Zhao, Z. Yu, and N. Li. 2016. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B 4 (45):7204–19. doi: 10.1039/C6TB02131J.
  • Xue, M. Y., L. L. Zhang, M. B. Zou, C. Q. Lan, Z. H. Zhan, and S. L. Zhao. 2015. Nitrogen and sulfur co-doped carbon dots: A facile and green fluorescence probe for free chlorine. Sensors and Actuators B: Chemistry 219:50–6. doi: 10.1016/j.snb.2015.05.021.
  • Zafarullah, M., W. Q. Li, J. Sylvester, and M. Ahmad. 2003. Molecular mechanisms of N-acetylcysteine actions. Cellular and Molecular Life Sciences 60 (1):6–20. doi: 10.1007/s000180300001.
  • Zandwijk, N. V., O. Dalesio, U. Pastorino, N. D. Vries, and H. V. Tinteren. 2000. Euroscan, a randomized trial of vitamin a and N-acetylcysteine in patients with head and neck cancer or lung cancer. For the European Organization for Research and Treatment of Cancer Head and Neck and Lung Cancer Cooperative Groups. Journal of the National Cancer Institute 92 (12):977–86. doi:10.1093/jnci/92.12.977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.