135
Views
9
CrossRef citations to date
0
Altmetric
Raman

Influence of Substrate-Target Distance on Structural and Optical Properties of Ga and (Al + Ga)-doped ZnO Thin Films Deposited by Radio Frequency Sputtering

, , , &
Pages 2227-2238 | Received 22 Jan 2019, Accepted 09 Apr 2019, Published online: 25 Apr 2019

References

  • Abduev, A.,. A. Akhmedov, and A. Asvarov. 2007. The structural and electrical properties of Ga-doped ZnO and Ga, B-codoped ZnO thin films: The effects of additional boron impurity. Solar Energy Materials and Solar Cells 91 (4):258–60. doi:10.1016/j.solmat.2006.09.008.
  • Alver, U., T. Kılınç, E. Bacaksız, T. Küçükömeroğlu, S. Nezir, İH. Mutlu, and F. Aslan. 2007. Synthesis and characterization of spray pyrolysis zinc oxide microrods. Thin Solid Films 515 (7–8):3448–51. doi:10.1016/j.tsf.2006.10.016.
  • Assuncao, V., E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, and R. Martins. 2003. New challenges on gallium-doped zinc oxide films prepared by rf magnetron sputtering. Thin Solid Films 442:102–6. doi:10.1016/S0040-6090(03)00955-6.
  • Cebulla, R., R. Wendt, and K. Ellmer. 1998. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. Journal of Applied Physics 83 (2):1087–95. doi:10.1063/1.366798.
  • Chin, H.-S., L.-S. Chao, and C.-C. Wu. 2016. Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering. Materials Research Bulletin 79:90–96. doi:10.1016/j.materresbull.2016.03.017.
  • Damen, T. C., S. P. S. Porto, and B. Tell. 1966. Raman effect in zinc oxide. Physical Review 142 (2):570–4. doi:10.1103/PhysRev.142.570.
  • Ding, J. J., S. Y. Ma, H. X. Chen, X. F. Shi, T. T. Zhou, and L. M. Mao. 2009. Influence of Al-doping on the structure and optical properties of ZnO films. Physica B. Condensed Matter 404 (16):2439–43. doi:10.1016/j.physb.2009.05.006.
  • Fortunato, E., P. Barquinha, and R. Martins. 2012. Oxide semiconductor thin-film transistors: A review of recent advances. Advanced Materials 24 (22):2945–86. doi:10.1002/adma.201103228.
  • Fortunato, E., Raniero, L. L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L. Pereira, G. Gonçalves, I. Ferreira, E., et al. 2008. Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Solar Energy Materials and Solar Cells 92 (12):1605–10. doi:10.1016/j.solmat.2008.07.009.
  • Gabas, M., A. L. Gabas, J. L. Canovas, F. Costa-Kramer, A. R. Agullo-Rueda, P. Gonzalez-Elipe, J. Dıaz-Carrasco, I. Hernandez-Moro, P. Lorite, P. Herrero., et al. 2013. Differences in n-type doping efficiency between Al- and Ga-ZnO films. Journal of Applied Physics 113:163709. doi:10.1063/1.4803063.
  • Ganjoo, A., and R. Golovchak. 2008. Computer program PARAV for calculating optical constants of thin films and bulk materials: Case study of amorphous semiconductors. Journal of Optoelectronics and Advanced Materials 10:1328–32.
  • Ghosh, R., D. Basak, and S. Fujihara. 2004. Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. Journal of Applied Physics 96 (5):2689–92. doi:10.1063/1.1769598.
  • Gîrbovan, Dorina, M. A., Bodea, D. Marconi, J. D. Pedarning, and A. Pop. 2011. Structure, morphology and optical properties of Al-doped ZnO thin films. Studia Universitatis Babeş-Bolyai Chemia 56:213–20.
  • Gondoni, P., M. Ghidelli, F. di Fonzo, V. Russo, P. Bruno, J. Martì-Rujas, C. E. Bottani, A. Li Bassi, and C. S. Casari. 2012. Structural and functional properties of Al: ZnO thin films grown by pulsed laser deposition at room temperature. Thin Solid Films 520 (14):4707–11. doi:10.1016/j.tsf.2011.10.072.
  • Granqvist, C. G. 2007. Transparent conductors as solar energy materials: A panoramic review. Solar Energy Materials and Solar Cells 91:1529–98. doi:10.1016/j.solmat.2007.04.031.
  • Gupta, C. A., S. Mangal, and U. P. Singh. 2014. Impact of rapid thermal annealing on structural, optical and electrical properties of DC sputtered doped and co-doped ZnO thin film. Applied Surface Science 288:411–5. doi:10.1016/j.apsusc.2013.10.048.
  • Hwang, D. -H., J. -H. Ahn, K. -N. Hui, K. -S. Hui, and Y. -G. Son. 2011. Effect of oxygen partial pressure contents on the properties of Al-doped ZnO thin films prepared by radio frequency sputtering. Journal of Ceramic Processing Research 12:150–4.
  • Jeong, S. H., J. W. Lee, S. B. Lee, and J. H. Boo. 2003. Deposition of aluminum-doped zincoxide films by RF magnetron sputtering and study of their structural, electrical and optical properties. Thin Solid Films 435 (1–2):78–82. doi:10.1016/S0040-6090(03)00376-6.
  • Jun, M. -C., S. -U. Park, and J. -H. Koh. 2012. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Research Letters 7 (1):639–645 doi:10.1186/1556-276X-7-639.
  • Kang, D. W., J. Y. Kwon, D. J. Lee, and A. M. K. Han. 2012. Boron and aluminum codoped ZnO transparent conducting films with high electrical stability. Journal of the Electrochemical Society 159:61–65.
  • Kang, D. -W., S. -J. Kim, T. -H. Moon, H. -M. Lee, and M. -K. Han. 2010. Effect of Ga doping on transparent and conductive Al-doped ZnO films prepared using magnetron cosputtering. Japanese Journal of Applied Physics 49 (12):125801. doi:10.1143/JJAP.49.125801.
  • Kim, N. -J., N. Shin, and C. -S. Hwang. 2017. Optical and electrical characteristics of Ga-Zn-O thin films prepared by RF magnetron co-sputtering system. Superlattices and Microstructures 101:68–75. doi:10.1016/j.spmi.2016.11.028.
  • Kim, Y. H., K. S. Lee, T. S. Lee, B. Cheong, T. Y. Seong, and W. M. Kim. 2009. Effects of substrate temperature and Zn addition on the properties of Al-doped ZnO films prepared by magnetron sputtering. Applied Surface Science 255 (16):7251–6. doi:10.1016/j.apsusc.2009.03.075.
  • Kobayakawa, S., Y. Tanaka, and A. Ide-Ektessabi. 2006. Characteristics of Al doped zinc oxide (ZAO) thin films deposited by RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research, Section B 249 (1–2):536–639. doi:10.1016/j.nimb.2006.03.047.
  • Lee, J., D. Lee, D. Lim, and K. Yang. 2007. Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications. Thin Solid Films 515 (15):6094–8. doi:10.1016/j.tsf.2006.12.099.
  • Lung, C., D. Marconi, M. Toma, and A. Pop. 2016. Characterization of the Aluminum concentration upon the properties of aluminum zinc oxide thin films. Analytical Letters 49 (8):1278–88. doi:10.1080/00032719.2015.1094663.
  • Lung, C., M. Toma, M. Pop, D. Marconi, and A. Pop. 2017. Characterization of the structural and optical properties of ZnO thin films doped with Ga,Al and (Al + Ga). Journal of Alloys and Compounds 725:1238–43. doi:10.1016/j.jallcom.2017.07.265.
  • Makuku, O., F. Mbaiwa, and T. S. Sathiaraj. 2016. Structural, optical and electrical properties of low temperature grown undoped and (Al, Ga) co-doped ZnO thin films by spray pyrolysis. Ceramics International 42 (13):14581–6. doi:10.1016/j.ceramint.2016.06.073.
  • Minami, T. 2008. Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications. Thin Solid Films 516 (7):1314–21. doi:10.1016/j.tsf.2007.03.082.
  • Özgür, Ü., Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç. 2005. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98 (4):041301–103. doi:10.1063/1.1992666.
  • Pankove, J. I. 1971. Optical processes in semiconductors, Chapter 2, 22. New York: Dover Publication.
  • Sahoo, S. K., C. A. Gupta, and U. P. Singh. 2016. Impact of Al and Ga co-doping with different proportion in ZnO thin film by DC magnetron sputtering. Journal of Materials Science: Materials in Electronics 27 (7):7161–6. doi:10.1007/s10854-016-4679-y.
  • Serrano, J., A. H. Romero, F. J. Manjón, R. Lauck, M. Cardona, and A. Rubio. 2004. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Physical Review B 69:094306.
  • Shin, S. W., G. L. Agawane, I. Y. Kim, S. H. Jo, M. S. Kim, G. S. Heo, J. H. Kim, and J. Y. Lee. 2013. Development of transparent conductive Mg and Ga co-doped ZnO thin films: Effect of Mg concentration. Surface and Coatings Technology 231:364–9. doi:10.1016/j.surfcoat.2012.03.008.
  • Spoorthi, K., S. Pramodini, I. V. Kityk, M. Abd-Lefdil, M. Sekkati, A. E. Fakir, A. Rao, G. Sanjeev, and P. Poornesh. 2017. Investigations on nonlinear optical properties of electron beam treated Gd: ZnO thin films for photonic device applications. Laser Physics 27 (6):065403. doi:10.1088/1555-6611/aa6f74.
  • Sui, Y. R., Yao, B. L. Xiao, L. L. Yang, J. Cao, X. F. Li, G. Z. Xing, J. H. Lang, X. Y. Li, S. Q. Lv, X. W., et al. 2013. Fabrication and characterization of P–N dual acceptor doped p-type ZnO thin films. Applied Surface Science 287:484–9. doi:10.1016/j.apsusc.2013.10.010.
  • Tsay, C. -Y., and W. -T. Hsu. 2013. Sol–gel derived undoped and boron-doped ZnO semiconductor thin films: Preparation and characterization. Ceramic International 39 (7):7425–32. doi:10.1016/j.ceramint.2013.02.086.
  • Tzolov, M., N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, and I. Ivanov. 2000. Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering. Thin Solid Films 379 (1–2):28–36. doi:10.1016/S0040-6090(00)01413-9.
  • Zhang, L., J. Huang, J. Yang, K. Tang, B. Ren, Y. Hu, L. Wang, and L. Wang. 2016. The effects of thickness on properties of B and Ga co-doped ZnO films grown by magnetron sputtering. Materials Science in Semiconductor Processing 42:277–82. doi:10.1016/j.mssp.2015.06.004.
  • Zi-Neng, N.,. K. -Y. Chan, C. -Y. Low, S. A. Kamaruddin, and M. Z. Sahdan. 2015. Al and Ga doped ZnO films prepared by sol-gel spin coating technique. Ceramics International 41:254–258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.