352
Views
19
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical Determination of Carbofuran in Tomatoes by a Concanavalin A (Con A) Polydopamine (PDA)-Reduced Graphene Oxide (RGO)-Gold Nanoparticle (GNP) Glassy Carbon Electrode (GCE) with Immobilized Acetylcholinesterase (AChE)

, , &
Pages 2283-2299 | Received 02 Mar 2019, Accepted 16 Apr 2019, Published online: 03 May 2019

References

  • Alonso, G. A., R. Munoz, and J. L. Marty. 2013. Automatic electronic tongue for on-line detection and quantification of organophosphorus and carbamate pesticides using enzymatic screen printed biosensors. Analytical Letters 46 (11):1743–57. doi:10.1080/00032719.2012.745087.
  • Askar, K. A., A. C. Kudi, and A. J. Moody. 2011. Purification of soluble acetylcholinesterase from sheep liver by affinity chromatography. Applied Biochemistry and Biotechnology 165 (1):336–46. doi:10.1007/s12010-011-9254-7.
  • Bucur, B., S. Andreescu, and J. L. Marty. 2004. Affinity methods to immobilize acetylcholinesterases for manufacturing biosensors. Analytical Letters 37 (8):1571–88. doi:10.1081/AL-120037588.
  • Bucur, B., A. F. Danet, and J. L. Marty. 2004. Versatile method of cholinesterase immobilization via affinity bonds using Concanavalin A applied to the construction of a screen-printed biosensor. Biosensors and Bioelectronics 20 (2):217–25. doi:10.1016/j.bios.2004.02.024.
  • Chiarello, M., and S. Moura. 2018. Determination of pesticides in organic carrots by high-performance liquid chromatography/high-resolution mass spectrometry. Analytical Letters 51 (16):2561–74. doi:10.1080/00032719.2018.1434664.
  • Di Tuoro, D., M. Portaccio, M. Lepore, F. Arduini, D. Moscone, U. Bencivenga, and D. G. Mita. 2011. An acetylcholinesterase biosensor for determination of low concentrations of paraoxon and dichlorvos. New Biotechnology 29 (1):132–8. doi:10.1016/j.nbt.2011.04.011.
  • Dong, L., S. Feng, S. Li, P. Song, and J. Wang. 2015. Preparation of concanavalin A-chelating magnetic nanoparticles for selective enrichment of glycoproteins. Analytical Chemistry 87 (13):6849–53. doi:10.1021/acs.analchem.5b01184.
  • Dounin, V., A. J. Veloso, H. Schulze, T. T. Bachmann, and K. Kerman. 2010. Disposable electrochemical printed gold chips for the analysis of acetylcholinesterase inhibition. Analytica Chimica Acta 669 (1–2):63–7. doi:10.1016/j.aca.2010.04.037.
  • Du, D., S. Chen, J. Cai, and A. Zhang. 2007. Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol–gel film for amperometric detection of organophosphorous insecticide. Biosensors and Bioelectronics 23 (1):130–4. doi:10.1016/j.bios.2007.03.008.
  • Du, D., J. Ding, Y. Tao, and X. Chen. 2008. Application of chemisorption/desorption process of thiocholine for pesticide detection based on acetylcholinesterase biosensor. Sensors and actuators B: Chemical 134 (2):908–12. doi:10.1016/j.snb.2008.06.040.
  • Du, D., M. Wang, J. Cai, Y. Qin, and A. Zhang. 2010. One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sensors and actuators B: Chemical 143 (2):524–9. doi:10.1016/j.snb.2009.09.051.
  • Ellman, G. L., K. D. Courtney, V. Andres, and R. M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7 (2):88–95. doi:10.1016/0006-2952(61)90145-9.
  • Freitas, S. S., F. A. Serafim, and F. M. Lancas. 2018. Determination of target pesticide residues in tropical fruits employing matrix solid-phase dispersion (MSPD) extraction followed by high resolution gas chromatography. Journal of the Brazilian Chemical Society 29 (5):1140–8. doi:10.21577/0103-5053.20180041.
  • Fu, L., X. Lu, J. Tan, L. Wang, and J. Chen. 2018. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC–MS/MS. Journal of Environmental Sciences. 63:116–25. doi:10.1016/j.jes.2017.09.010.
  • GB 2763-2016. 2016. National food safety standard—Maximum residue limits for pesticides in food. China.
  • Gu, T., Y. Zhang, F. Deng, J. Zhang, and Y. Hasebe. 2011. Direct electrochemistry of glucose oxidase and biosensing for glucose based on DNA/chitosan film. Journal of Environmental Sciences. 23:S66–9. doi:10.1016/S1001-0742(11)61080-2.
  • Guan, H., F. Zhang, J. Yu, and D. Chi. 2012. The novel acetylcholinesterase biosensors based on liposome bioreactors–chitosan nanocomposite film for detection of organophosphates pesticides. Food Research International 49 (1):15–21. doi:10.1016/j.foodres.2012.07.014.
  • Huang, K. J., Y. J. Liu, H. B. Wang, and Y. Y. Wang. 2014. A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@ graphene composite. Electrochimica Acta. 118:130–7. doi:10.1016/j.electacta.2013.12.019.
  • Jeyapragasam, T., and R. Saraswathi. 2014. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide–chitosan nanocomposite. Sensors and Actuators B:Chemical 191:681–7. doi:10.1016/j.snb.2013.10.054.
  • Jin, A., W. Chen, Q. Zhu, Y. Yang, V. L. Volkov, and G. S. Zakharova. 2008. Electrical and electrochemical characterization of poly (ethylene oxide)/V2O5 xerogel electrochromic films. Solid State Ionics 179 (21–26):1256–62. doi:10.1016/j.ssi.2008.01.019.
  • Kamin, R. A., and G. S. Wilson. 1980. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Analytical Chemistry 52 (8):1198–205. doi:10.1021/ac50058a010.
  • Kestwal, R. M., D. Bagal-Kestwal, and B. H. Chiang. 2015. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetycholinesterase based biosensor for carbamates detection. Analytica Chimica Acta 886:143–50. doi:10.1016/j.aca.2015.06.004.
  • Kongphonprom, K., and R. Burakham. 2016. Determination of carbamate insecticides in water, fruit, and vegetables by ultrasound-assisted dispersive liquid–liquid microextraction and high-performance liquid chromatography. Analytical Letters 49 (6):753–67. doi:10.1080/00032719.2015.1081917.
  • Lawal, A., R. C. S. Wong, G. H. Tan, L. B. Abdulra’uf, and A. M. A. Alsharif. 2018. Recent modifications and validation of QuEChERS-dSPE coupled to LC–MS and GC–MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables. Journal of Chromatographic Science 56 (7):656–69. doi:10.1093/chromsci/bmy032.
  • Li, Y., Y. Bai, G. Han, and M. Li. 2013. Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sensors and Actuators B-Chemical 185:706–12. doi:10.1016/j.snb.2013.05.061.
  • Li, N., J. Chen, and Y. P. Shi. 2015. Magnetic graphene solid-phase extraction for the determination of carbamate pesticides in tomatoes coupled with high performance liquid chromatography. Talanta 141:212–9. doi:10.1016/j.talanta.2015.04.018.
  • Li, Z., J. Nie, Z. Yan, Y. Cheng, F. Lan, Y. Huang, Q. Chen, X. Zhao, and A. Li. 2018. A monitoring survey and dietary risk assessment for pesticide residues on peaches in China. Regulatory Toxicology and Pharmacology 97:152–62. doi:10.1016/j.yrtph.2018.06.007.
  • Li, F., Y. Yuan, P. Meng, M. Wu, S. Li, and B. Chen. 2017. Probabilistic acute risk assessment of cumulative exposure to organophosphorus and carbamate pesticides from dietary vegetables and fruits in Shanghai populations. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 34 (5):819–31. doi:10.1080/19440049.2017.1279350.
  • Liu, G., and Y. Lin. 2006. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry 78 (3):835–43. doi:10.1021/ac051559q.
  • Liu, Y., D. Fu, L. Yu, Y. Xiao, X. Peng, and X. Liang. 2016. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. Journal of Chromatography A 1455:147–55. doi:10.1016/j.chroma.2016.05.093.
  • Liu, T., H. Su, X. Qu, P. Ju, L. Cui, and S. Ai. 2011. Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sensors and Actuators B-Chemical 160 (1):1255–61. doi:10.1016/j.snb.2011.09.059.
  • Moreno-Gonzalez, D., L. Gamiz-Gracia, A. M. Garcia-Campana, and J. M. Bosque-Sendra. 2011. Use of dispersive liquid–liquid microextraction for the determination of carbamates in juice samples by sweeping-micellar electrokinetic chromatography. Analytical and Bioanalytical Chemistry 400 (5):1329–38. doi:10.1007/s00216-011-4682-3.
  • Moreno-Gonzalez, D., J. F. Huertas-Perez, A. M. Garcia-Campana, and L. Gamiz-Gracia. 2015. Vortex-assisted surfactant-enhanced emulsification liquid–liquid microextraction for the determination of carbamates in juices by micellar electrokinetic chromatography tandem mass spectrometry. Talanta 139:174–80. doi:10.1016/j.talanta.2015.02.057.
  • Pano-Farias, N. S., S. G. Ceballos-Magana, R. Muniz-Valencia, and J. Gonzalez. 2017. Validation and assessment of matrix effect and uncertainty of a gas chromatography coupled to mass spectrometry method for pesticides in papaya and avocado samples. Journal of Food and Drug Analysis 25 (3):501–9. doi:10.1016/j.jfda.2016.09.005.
  • Peng, H. P., Y. Hu, A. L. Liu, W. Chen, X. H. Lin, and X. B. Yu. 2014. Label-free electrochemical immunosensor based on multi-functional gold nanoparticles–polydopamine–thionine–graphene oxide nanocomposites film for determination of alpha-fetoprotein. Journal of Electroanalytical Chemistry 712 :89–95. doi:10.1016/j.jelechem.2013.10.013.
  • Qu, Y., Q. Sun, F. Xiao, G. Shi, and L. Jin. 2010. Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 77 (2):139–44. doi:10.1016/j.bioelechem.2009.08.001.
  • Ruan, C., W. Shi, H. Jiang, Y. Sun, X. Liu, X. Zhang, Z. Sun, L. Dai, and D. Ge. 2013. One-pot preparation of glucose biosensor based on polydopamine–graphene composite film modified enzyme electrode. Sensors and Actuators B: Chemical 177:826–32. doi:10.1016/j.snb.2012.12.010.
  • Shamgsumova, R. V., D. N. Shurpik, V. G. Evtugyn, I. I. Stoikov, and G. A. Evtugyn. 2018. Electrochemical determination of malathion on an acetylcholinesterase-modified glassy carbon electrode. Analytical Letters 51 (12):1911–26. doi:10.1080/00032719.2017.1396338.
  • Sun, X., Z. Gong, Y. Cao, and X. Wang. 2013. Acetylcholinesterase biosensor based on poly (diallyldimethylammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film. Nano-Micro Letters 5 (1):47–56. doi:10.1007/BF03353731.
  • Wang, G., X. Tan, Q. Zhou, Y. Liu, M. Wang, and L. Yang. 2014. Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor. Sensors and Actuators B: Chemical 190:730–6. doi:10.1016/j.snb.2013.09.042.
  • Yang, P., X. Li, L. Wang, Q. Wu, Z. Chen, and X. Lin. 2014. Sandwich-type amperometric immunosensor for cancer biomarker based on signal amplification strategy of multiple enzyme-linked antibodies as probes modified with carbon nanotubes and concanavalin A. Journal of Electroanalytical Chemistry 732:38–45. doi:10.1016/j.jelechem.2014.08.030.
  • Yang, L., G. Wang, Y. Liu, and M. Wang. 2013. Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Talanta 113:135–41. doi:10.1016/j.talanta.2013.03.025.
  • Zhai, C., X. Sun, W. Zhao, Z. Gong, and X. Wang. 2013. Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-step electrodeposition. Biosensors and Bioelectronics 42:124–30. doi:10.1016/j.bios.2012.10.058.
  • Zhang, S., N. Huang, Q. Lu, M. Liu, H. Li, Y. Zhang, and S. Yao. 2016. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate. Biosensors and Bioelectronics 77:1078–85. doi:10.1016/j.bios.2015.10.089.
  • Zhang, Y., A. Yang, X. Zhang, H. Zhao, X. Li, and Z. Yuan. 2013. Highly selective and sensitive biosensor for cysteine detection based on in situ synthesis of gold nanoparticles/graphene nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 436:815–22. doi:10.1016/j.colsurfa.2013.08.016.
  • Zhou, L., Y. Jiang, J. Gao, X. Zhao, L. Ma, and Q. Zhou. 2012. Oriented immobilization of glucose oxidase on graphene oxide. Biochemical Engineering Journal 69:28–31. doi:10.1016/j.bej.2012.07.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.