1,174
Views
10
CrossRef citations to date
0
Altmetric
Nanotechnology

Novel Copper(II)-Selective Potentiometric Sensor Based on a Folic Acid-Functionalized Carbon Nanotube Material

, , , , , , & show all
Pages 2524-2545 | Received 04 Apr 2019, Accepted 07 May 2019, Published online: 17 May 2019

References

  • Aberefa, O. A., M. O. Daramola, and S. E. Iyuke. 2019. Production and functionalization of carbon nanotubes for application in membrane synthesis for natural gas separation. Microporous and Mesoporous Materials 280:26–36. doi: 10.1016/j.micromeso.2018.12.040.
  • Abu-Dalo, M. A., A. A. Salam, and N. S. Nassory. 2015. Ion imprinted polymer based on electrochemical sensor for environmental monitoring of copper(II). International Journal of Electrochemical Sciences 10:6780–93.
  • Ajayan, P. M. 1999. Nanotubes from carbon. Chemical Reviews 99 (7):1787–99. doi: 10.1021/cr970102g.
  • Al Aani, S., V. Gomez, C. J. Wright, and N. Hilal. 2017. Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. Chemical Engineering Journal 326:721–36. doi: 10.1016/j.cej.2017.06.029.
  • Ali, T. A., M. A. Eldidamony, G. G. Mohamed, and D. M. Elatfy. 2014. Construction of chemically modified electrode for the selective determination of copper(II) ions in polluted water samples based on new β-cyclodextrine and 1,4-bis(6-bromohexyloxy)benzene ionophores. International Journal of Electrochemical Science 9:2420–34.
  • Al Zoubi, W., and N. Al Mohanna. 2014. Membrane sensors based on Schiff bases as chelating ionophores (a review). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132:854–70. doi: 10.1016/j.saa.2014.04.176.
  • Anastasova, S., A. Radu, G. Matzeu, C. Zuliani, U. Mattinen, J. Bobacka, and D. Diamond. 2012. Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection. Electrochimica Acta 73:93–7. doi: 10.1016/j.electacta.2011.10.089.
  • Ardakani, M. M., M. S. Miasari, M. K. Kashani, and S. M. Ghoreishi. 2004. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques. Analytical and Bioanalytical Chemistry 378:1659–65. doi: 10.1007/s00216-003-2462-4.
  • Benvidi, A., M. T. Ghanbarzadeh, M. Dehghan, M. Mazloum-Ardakani, and R. Vafazadeh. 2014. Thiocyanate ion selective electrode based on bis(N-3-methylphenyl salicylidenaminato) copper (II) ionophore. Chinese Chemical Letters 25 (12):1639–42. doi: 10.1016/j.cclet.2014.06.020.
  • Beullens, K., P. Mészáros, S. Vermeir, D. Kirsanov, A. Legin, S. Buysens, N. Cap, B. M. Nicolaï, and J. Lammertyn. 2008. Analysis of tomato taste using two types of electronic tongues. Sensors and Actuators B: Chemical 131 (1):10–7. doi: 10.1016/j.snb.2007.12.024.
  • Brouder, S. M., M. Thom, V. I. Adamchuck, and M. T. Morgan. 2003. Potential uses of ion-selective potassium electrodes in soil fertility management. Communications in Soil Science and Plant Analysis 34 (19–20):2699–726. doi: 10.1081/CSS-120025214.
  • Campisi, S., F. S. Trujillo, D. Motta, T. Davies, N. Dimitratos, and A. Villa. 2018. Controlling the incorporation of phosphorus functionalities on carbon nanofibers: Effects on the catalytic performance of fructose dehydration. Journal of Carbon Research 4(1):1–17. doi: 10.3390/c4010009.
  • Chester, R., M. Sohail, M. Ogden, M. Mocerino, E. Pretsch, and R. De Marco. 2014. A calixarene-based ion-selective electrode for thallium(I) detection. Analytica Chimica Acta 851:78–86. doi: 10.1016/j.aca.2014.08.046.
  • Coldur, F., M. Andac, and İ. Isildak. 2010. Flow-injection potentiometric applications of solid state Li+ selective electrode in biological and pharmaceutical samples. Journal of Solid State Electrochemistry 14 (12):2241–9. doi: 10.1007/s10008-010-1070-4.
  • Crespo, G. A. 2017. Recent advances in ion-selective membrane electrodes for in situ environmental water analysis. Electrochimica Acta 245:1023–34. doi: 10.1016/j.electacta.2017.05.159.
  • Crespo, G. A., S. Macho, J. Bobacka, and F. X. Rius. 2009. Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Analytical Chemistry 81 (2):676–81. doi: 10.1021/ac802078z.
  • Cuartero, M., and E. Bakker. 2017. Environmental water analysis with membrane electrodes. Current Opinion in Electrochemistry 3(1):97–105. doi: 10.1016/j.coelec.2017.06.010.
  • Ellison, M. D., and M. Chorney. 2016. Reaction of folic acid with single-walled carbon nanotubes. Surface Science 652:300–3. doi: 10.1016/j.susc.2016.03.026.
  • El-Wahed, M. G. A., M. S. Refat, and S. M. El-Megharbel. 2008. Synthesis, spectroscopic and thermal characterization of some transition metal complexes of folic acid. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 70 (4):916–22. doi: 10.1016/j.saa.2007.10.008.
  • Elzanfaly, E. S., and A. S. Saad. 2017. Green in-line ion selective electrode potentiometric method for determination of amantadine in dissolution media and in pharmaceutical formulations. ACS Sustainable Chemistry & Engineering 5 (5):4381–7. doi: 10.1021/acssuschemeng.7b00421.
  • Fakhari, A. R., T. A. Raji, and H. Naeimi. 2005. Copper-selective PVC membrane electrodes based on salens as carriers. Sensors and Actuators B 104 (2):317–23. doi: 10.1016/j.snb.2004.05.024.
  • Faridbod, F., M. R. Ganjali, R. Dinarvand, P. Norouzi, and S. Riahi. 2008. Schiff’s bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors. Sensors 8 (3):1645–703. doi: 10.3390/s8031645.
  • Fay, C., S. Anastasova, C. Slater, S. T. Buda, R. Shepherd, B. Corcoran, N. E. O’Connor, G. G. Wallace, A. Radu, and D. Diamond. 2011. Wireless ion-selective electrode autonomous sensing system. IEEE Sensors Journal 11 (10):2374–82. doi: 10.1109/JSEN.2011.2122331.
  • Ferreira, F. V., W. Franceschi, B. R. C. Menezes, F. S. Brito, K. Lozano, A. R. Coutinho, L. S. Cividanes, and G. P. Thim. 2017. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Applied Surface Science 410:267–77. doi: 10.1016/j.apsusc.2017.03.098.
  • Ganjali, M. R., M. Emami, and M. S. Niasari. 2002. Novel copper(ii)-selective sensor based on a new hexadentates Schiff’s base. Bulletin Korean Chemical Society 23 (10):1394–8. doi: 10.5012/bkcs.2002.23.10.1394.
  • Gholivand, M. B., and N. Nozari. 2001. Copper (II)-selective electrode using 2,2’-dithiodianiline as neutral carrier. Talanta 54 (4):597–602. doi: 10.1016/S0039-9140(00)00671-8.
  • Gorski, L., E. Malinowska, P. Parzuchowski, W. Zhang, and M. E. Meyerhoff. 2003. Recognition of anions using metalloporphyrin-based ion-selective membranes: State of the Art. Electroanalysis 15:1229–35. doi: 10.1002/elan.200302814.
  • Gupta, V. K., A. K. Singh, and N. Mergu. 2012. A new beryllium ion-selective membrane electrode based on dibenzo(perhydrotriazino)aza-14-crown-4 ether. Analytica Chimica Acta 749:44–50. doi: 10.1016/j.aca.2012.08.050.
  • Gupta, V. K., A. K. Singh, S. Mehtab, and B. Gupta. 2006. A cobalt (II)-selective PVC membrane based on a Schiff base complex of N,N’-bis(salicylidene)-3,4-diaminotoluene. Analytica Chimica Acta 566 (1):5–10. doi: 10.1016/j.aca.2006.02.038.
  • Gupta, V. K., L. P. Singh, R. Singh, N. Upadhyay, S. P. Kaur, and B. Sethi. 2012. A novel copper (II) selective sensor based on dimethyl 4,4’(o-phenylene)bis(3-thioallophanate) in PVC matrix. Journal of Molecular Liquids 174:11–6. doi: 10.1016/j.molliq.2012.07.016.
  • Gupta, V. K., R. Prasad, and A. Kumar. 2003. Preparation of ethambutol-copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta 60 (1):149–60. doi: 10.1016/S0039-9140(03)00118-8.
  • Gupta, V. K., R. N. Goyal, N. Bachheti, L. P. Singh, and S. Agarwal. 2005. A copper-selective electrode based on bis(acetylacetone)propylenediimine. Talanta 68 (2):193–7. doi: 10.1016/j.talanta.2005.06.050.
  • Haber, F., and Z. Klemensiewicz. 1909. Uber electrische Phasengrenzkrafte. Z. Physik Chem. 67:385–431.
  • Hasani, B., A. Zamani, M. K. Moftakhar, M. Mostafavi, M. R. Yaftian, and M. Ghorbanloo. 2018. Ionophore properties of Schiff base compounds as ion sensing molecules for fabricating Cu(II) ion-selective electrodes. Journal of Analytical Chemistry 73 (1):82–90. doi: 10.1134/S1061934818010021.
  • Hassan, S. S., E. M. Elnemma, and A. H. Mohamed. 2005. Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta 66 (4):1034–41. doi: 10.1016/j.talanta.2005.01.007.
  • Idress, M. O., A. A. Elbashir, and O. Nur. 2017. Potentiometric determination of moxifloxacin by ZnO nanorodes modified ion selective electrode. Pharmaceutica Analytica Acta 8 (10):566. doi: 10.4172/2153-2435.1000566.
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354 (6348):56–8. doi: 10.1038/354056a0.
  • Isildak, I., M. Yolcu, O. Isildak, N. Demirel, G. Topal, and H. Hosgoren. 2004. All-solid-state PVC membrane Ag+-selective electrodes based on Diaza-18-crown-6 compounds. Microchimica Acta 144 (1–3):177–81. doi: 10.1007/s00604-003-0072-7.
  • Jain, A. K., R. K. Singh, S. Jain, and J. Raisoni. 2008. Copper (II) ion selective electrode based on a newly synthesized Schiff-base chelate. Transition Metal Chemistry 33 (2):243–9. doi: 10.1007/s11243-007-9022-2.
  • Jain, A. K., V. K. Gupta, L. P. Singh, and J. R. Raisoni. 2005. Chelating ionophore based membrane sensors for copper (II) ions. Talanta 66 (5):1355–61. doi: 10.1016/j.talanta.2005.02.001.
  • Jan, J. C., and F. Biernat. 1990. Application of azoles as neutral carriers in liquid membrane ion-selective pH electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 277 (1–2):159–64. doi: 10.1016/0022-0728(90)85098-P.
  • Ji, P., H. Tan, X. Xu, and W. Feng. 2010. Lipase covalently attached to multi-walled carbon nanotubes as an efficient catalyst in organic solvent. AIChE Journal 56 (11):3005–11. doi: 10.1002/aic.12180.
  • Kardaş, F. 2019. Facile synthesis and characterization of 5-[(3-methylthiophene-2-yl-methyleneamino)]-2-mercaptobenzimidazole and its potentiometric sensor application in a polyvinyl chloride membrane for the determination of copper (II). Analytical Letters 52 (9):1418–31. doi: 10.1080/00032719.2018.1543700.
  • Karimi, M., I. Chaudhury, C. Jianjun, M. Safari, R. Sadeghi, M. Habibi-Rezaei, and J. Kokini. 2014. Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles. Journal of Molecular Catalysis. B, Enzymatic NLM 104:48–55. doi: 10.1016/j.molcatb.2014.01.025.
  • Kim, S. W., T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, and C. R. Park. 2012. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50 (1):3–33. doi: 10.1016/j.carbon.2011.08.011.
  • Kima, J. P., B. Y. Leeb, J. Leeb, S. Hongb, and S. J. Sima. 2009. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosensors & Bioelectronics 24:3372–8. doi: 10.1016/j.bios.2009.04.048.
  • Kopylovich, M. N., K. T. Mahmudov, and A. J. L. Pombeiro. 2011. Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione. Journal of Hazardous Materials 186 (2–3):1154–62. doi: 10.1016/j.jhazmat.2010.11.119.
  • Li, G., X. Lyu, Z. Wang, Y. Rong, R. Hu, Z. Luo, and Y. Wang. 2017. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode. Measurement Science and Technology 28 (2):025104. doi: 10.1088/1361-6501/aa52a9.
  • Ling, X., Y. Wei, L. Zou, and S. Xu. 2013. The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes. Applied Surface Science 276:159–66. doi: 10.1016/j.apsusc.2013.03.056.
  • Mahajan, R. K., and P. Sood. 2007. Novel copper(ii)-selective electrode based on 2,2’:5’,2’’-terthiophene in PVC Matrix. International Journal of Electrochemical Sciences 2:832–47.
  • Malinowska, E. 1990. Lead-selective membrane electrodes based on neutral carriers. Part I. Acyclic amides and oxamides. The Analyst 115 (8):1085–7. doi: 10.1039/an9901501085.
  • Matveichuk, Y. V., E. M. Rakhman’ko, Y. Akayeu, and D. Stanishevskii. 2018a. Ion-selective electrodes based on long-chain quaternary ammonium salts with enhanced steric accessibility, and their application for determination of hydrophilic double-charged inorganic anion. Chemical Papers 72 (3):731–9. doi: 10.1007/s11696-017-0320-7.
  • Matveichuk, Y. V., E. M. Rakhman’ko, and E. B. Okaev. 2018b. Carbonate-selective electrodes based on higher quaternary ammonium salts with increased steric accessibility of the exchange site. Journal of Analytical Chemistry 73 (7):719–27. doi: 10.1134/S1061934818030097.
  • Memon, A. A., A. R. Solangi, S. Memon, A. A. Bhatti, and A. A. Bhatti. 2016. Highly selective determination of perchlorate by a calix[4]arene based polymeric membrane electrode. Polycyclic Aromatic Compounds 36 (2):106–19. doi: 10.1080/10406638.2014.948121.
  • Mitchell-Koch, J. T., M. Pietrzak, E. Malinowska, and M. E. Meyerhoff. 2006. Aluminum porphyrins as ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis 18 (6):551–7. doi: 10.1002/elan.200503450.
  • Mkhondo, N. B., and T. Magadzu. 2014. Effects of different acid-treatment on the nanostructure and performance of carbon nanotubes in electrochemical hydrogen storage. Digest Journal of Nanomaterials and Biostructures 9 (4):1331–8.
  • Mostafa, G. A. H., M. Hefnawy, M. Abounassif, A. Alanazi, A. A. Majed, and A. Homoda. 2016. Ion selective electrodes for potentiometric determination of tizanidine in its pharmaceutical dosage form. Current Pharmaceutical Analysis 12 (3):177–83. doi: 10.2174/1573412911666150901221816.
  • Pastine, S. J., Okawa, D. B. Kessler, M. Rolandi, M. Llorente, A. Zettl, and J. M. J. Fréchet. 2008. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. Journal of the American Chemical Society 130(13):4238–9. doi: 10.1021/ja8003446.
  • Ramanathan, T., F. T. Fisher, R. S. Ruoff, and L. C. Brinson. 2005. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chemistry of Materials 17 (6):1290–5. doi: 10.1021/cm048357f.
  • Rosenberg, R., M. S. Bono, S. Braganza, C. Vaishnav, R. Karnik, and A. J. Hart. 2018. In-field determination of soil ion content using a handheld device and screen-printed solid-state ion-selective electrodes. PLoS One 13 (9):e0203862. doi: 10.1371/journal.pone.0203862.
  • Sadeghi, S., and M. Jahani. 2009. New copper (II) ion-selective membrane electrode based on erythromycin ethyl Succinate as a neutral ionophore. Analytical Letters 42 (13):2026–40. doi: 10.1080/00032710903083877.
  • Sarsam, W. S., A. Amiri, M. Shanbedi, S. N. Kazi, A. Badarudin, H. Yarmand, K. Bashirnezhad, and T. Zaharinie. 2017. Synthesis, stability, and thermophysical properties of aqueous colloidal dispersions of multi-walled carbon nanotubes treated with beta-alanine. International Communications in Heat and Mass Transfer 89:7–17. doi: 10.1016/j.icheatmasstransfer.2017.09.006.
  • Sendil, O., E. Pecenek, G. Ekmekci, and G. Somer. 2009. Preparation and application of potassium ion-selective membrane electrode based on benzo-15-crown-5 ether. Current Analytical Chemistry 5 (1):53–8. doi: 10.2174/157341109787047880.
  • Shamsipur, M., M. Javanbakht, M. F. Mousavi, M. R. Ganjali, V. Lippolis, A. Garau, and L. Tei. 2001. Copper (II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1, 10-phenanthroline sub-unit. Talanta 55 (6):1047–54. doi: 10.1016/S0039-9140(01)00434-9.
  • Siswanta, D., K. Nagatsuka, H. Yamada, K. Kumakura, H. Hisamoto, Y. Shichi, K. Toshima, and K. Suzuki. 1996. Structural ion selectivity of thia crown ether compounds with a bulky block subunit and their application as an ion-sensing component for an ion-selective electrode. Analytical Chemistry 68 (23):4166–72. doi: 10.1021/ac960396q.
  • Srivastava, S. K., V. K. Gupta, and S. Jain. 1996. PVC-based 2,2,2-cryptand sensor for zinc ions. Analytical Chemistry 68 (7):1272–5. doi: 10.1021/ac9507000.
  • Sun, C., Y. Sun, X. Zhang, H. Xu, and J. Shen. 1995. Selective potentiometric determination of copper(II) ions by use of a molecular deposition film electrode based on water-soluble copper phthalocyanine. Analytica Chimica Acta 312 (2):207–12. doi: 10.1016/0003-2670(95)00229-S.
  • Topcu, C. 2016. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite. Talanta 161:623–31. doi: 10.1016/j.talanta.2016.09.018.
  • Topcu, C., S. Caglar, B. Caglar, F. Coldur, O. Cubuk, G. Sarp, K. Gedik, B. B. Cirak, and A. Tabak. 2016. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application. Advances in Natural Sciences: Nanoscience and Nanotechnology 7 (3):035012. doi: 10.1088/2043-6262/7/3/035012.
  • Topcu, C., B. Caglar, A. Önder, F. Coldur, S. Caglar, E. K. Guner, O. Cubuk, and A. Tabak. 2018a. Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor. Material Research Bulletin 98:288–99. doi: 10.1016/j.materresbull.2017.09.068.
  • Topcu, C., G. Lacin, V. Yilmaz, F. Coldur, B. Caglar, O. Cubuk, and I. Isildak. 2018b. Electrochemical determination of copper (ii) in water samples using a novel ion-selective electrode based on a graphite oxide-imprinted polymer composite. Analytical Letters 51 (12):1890–910. doi: 10.1080/00032719.2017.1395035.
  • Trefz, F. M., I. Lorenz, and P. D. Constable. 2018. Evaluation of a portable ion-selective electrode meter for measuring potassium concentrations in whole blood and plasma of calves. The Veterinary Journal 238:10–4. doi: 10.1016/j.tvjl.2018.06.004.
  • Trinh, P. V., N. N. Anh, N. T. Tam, N. T. Hong, P. N. Hong, P. N. Minh, and B. H. Thang. 2017. Influence of defects induced by chemical treatment on the electrical and thermal conductivity of nanofluids containing carboxyl-functionalized multi-walled carbon nanotubes. RSC Advances 7:49937–46. doi: 10.1039/C7RA08552D.
  • Umezawa, Y., P. Bühlmann, K. Umezawa, K. Tohda, and S. Amemiya. 2000. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure and Applied Chemistry 72 (10):1851–2082. doi: 10.1351/pac200072101851.
  • Verma, M. L., M. Naebe, C. J. Barrow, and M. Puri. 2013. Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: Structural and biocatalytic characterisation. PLoS One 8 (9):e73642. doi: 10.1371/journal.pone.0073642.
  • Vlascici, D., E. Fagadar-Cosma, I. Popa, V. Chiriac, and M. Gil-Agusti. 2012. A novel sensor for monitoring of iron(III) ions based on porphyrins. Sensors 12 (6):8193–203. doi: 10.3390/s120608193.
  • Vuković, G., A. Marinković, M. Obradović, V. Radmilović, M. Čolić, R. Aleksić, and P. S. Uskoković. 2009. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes. Applied Surface Science 255 (18):8067–75. doi: 10.1016/j.apsusc.2009.05.016.
  • Wang, J., L. Wang, H. Yi, J. Jia, L. Jiang, W. Yang, Q. Sun, and H. Lv. 2007. PVC membrane electrode based on tri-heptyl dodecyl ammonium iodide for the selective determination of molybdate (VI). Analytica Chimica Acta 589 (1):33–8. doi: 10.1016/j.aca.2007.02.032.
  • Wepasnick, K. A., B. A. Smith, J. L. Bitter, and D. H. Fairbrother. 2010. Chemical and structural characterization of carbon nanotube surfaces. Analytical and Bioanalytical Chemistry 396 (3):1003–14. doi: 10.1007/s00216-009-3332-5.
  • Wulandari, S. A., H. Widiyandari, and A. Subagio. 2018. Synthesis and characterization carboxyl functionalized multiwalled carbon nanotubes (MWCNT-COOH) and NH2 functionalized multi-walled carbon nanotubes (MWCNTNH2). IOP Conference Series: Journal of Physics: Conference Series 1025:012005. doi: 10.1088/1742-6596/1025/1/012005.
  • Yan, R., S. Qiu, L. Tong, and Y. Qian. 2016. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: From conventional ISEs to graphene-based ISEs. Chemical Speciation & Bioavailability 28 (1–4):72–7. doi: 10.1080/09542299.2016.1169560.
  • Yoshimoto, S., H. Mukai, T. Kitano, and Y. Sohrin. 2003. Copper (II)-selective membrane electrode based on
  • (3-isopropylpyrazolyl) methane in a poly (vinyl chloride) matrix. Analytica Chimica Acta 494 (1–2):207–13. doi: 10.1016/S0003-2670(03)01012-2.
  • Yudianti, R., H. Onggo, Y. Saito, T. Iwata, and J. I. Azuma. 2011. Analysis of functional group sited on multi-wall carbon nanotube surface. The Open Materials Science Journal 5 (1):242–7. doi: 10.2174/1874088X01105010242.
  • Zamani, H. A., G. Rajabzadeh, A. Firouz, and M. R. Ganjali. 2007. Determination of copper(II) in wastewater by electroplating samples using a PVC-membrane copper(II) selective electrode. Journal of Analytical Chemistry 62 (11):1080–7. doi: 10.1134/S1061934807110135.
  • Zhu, J., Y. Qin, and Y. Zhang. 2009. Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites. Electrochemistry Communications 11 (8):1684–7. doi: 10.1016/j.elecom.2009.06.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.