391
Views
30
CrossRef citations to date
0
Altmetric
Sensors

Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode

, , , &
Pages 2583-2606 | Received 18 Mar 2019, Accepted 14 May 2019, Published online: 24 May 2019

References

  • Adams, R. N. 1958. Carbon Paste Electrodes. Analytical Chemistry 30(9):1576–. doi: 10.1021/ac60141a600
  • Bard, A. J., and L. R. Faulkner. 1980. Electrochemical methods: fundamentals and applications, 324–53. New York: Wiley
  • Berger, K., B. Eskenazi, K. Kogut, K. Parra, R. H. Lustig, L. C. Greenspan, N. Holland, A. M. Calafat, K. Ye, and K. G. Harley. 2018. Association of prenatal urinary concentrations of phthalates and bisphenol A and pubertal timing in boys and girls. Environmental Health Perspectives 126:97004.
  • Bharath, G., R. Madhu, S. M. Chen, V. Veeramani, D. Mangalaraj, and N. Ponpandian. 2015. Solvent-free mechano-chemical synthesis of graphene oxide and Fe3O4–reduced graphene oxide nanocomposites for sensitive detection of nitrite. Journal of Materials Chemistry A 3(30):15529–39. doi: 10.1039/C5TA03179F.
  • Bhuyan, S. A., N. Uddin, M. Islam, F. A. Bipasha, and S. S. Hossain. 2016. Synthesis of graphene. International Nano Letters 6(2):65–83. doi: 10.1007/s40089-015-0176-1.
  • Burt Solorzano, C. M., and C. R. McCartney. 2010. Obesity and the pubertal transition in girls and boys. Reproduction (Cambridge, England) 140(3):399–410. doi: 10.1530/REP-10-0119.
  • Canevari, T. C., M. V. Rossi, and A. D. P. Alexiou. 2019. Development of an electrochemical sensor of endocrine disruptor bisphenol A by reduced graphene oxide for incorporation of spherical carbon nanoparticles. Journal of Electroanalytical Chemistry 832:24–30. doi: 10.1016/j.jelechem.2018.10.044.
  • Centers for Disease Control and Prevention. 2019. January 3, https://www.cdc.gov/healthyweight/bmi/calculator.html
  • DiVall, S. A. 2013. The influence of endocrine disruptors on growth and development of children. Current Opinion in Endocrinology Diabetes and Obesity 20(1):50–5. doi: 10.1097/MED.0b013e32835b7ee6.
  • Fan, H., Y. Li, D. Wu, H. Ma, K. Mao, D. Fan, B. Du, H. Li, and Q. Wei. 2012. Electrochemical bisphenol A sensor based on N-doped graphene sheets. Analytica Chimica Acta 711:24–8. doi: 10.1016/j.aca.2011.10.051.
  • Frutiger, A., J. T. Muth, D. M. Vogt, Y. Menguc, A. Campo, A. D. Valentine, C. J. Walsh, and J. A. Lewis. 2015. Capacitive soft strain sensors via multicore-shell fiber printing. Advanced Materials 27(15):2440–6. doi: 10.1002/adma.201500072.
  • Ganesh, V., S. Pitchumani, and V. Lakshminarayanan. 2006. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. Journal of Power Sources 158(2):1523–32. doi: 10.1016/j.jpowsour.2005.10.090.
  • Goldman, L., H. Falk, P. J. Landrigan, S. J. Balk, J. R. Reigart, and R. A. Etzel. 2004. Environmental paediatrics and its impact on government health policy. Pediatrics 113(4 Suppl):1146–57.
  • Huang, N. M. Liu, H. Li, Y. Zhang, and S. Yao. 2015. Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra-sensitive detection platform for bisphenol A. Analytica Chimica Acta 853 :249–57. doi: 10.1016/j.aca.2014.10.016
  • Huang, W. 2005. Voltammetric determination ofbisphenol A using a carbon paste electrode based on the enhancement effect ofcetyltrimethylammonium bromide (CTAB). Bulletin of the Korean Chemical Society 26 :1560–4.
  • Huang, W. 2005. Voltammetric determination ofbisphenol A using a carbon paste electrode based on the enhancement effect ofcetyltrimethylammonium bromide (CTAB). Bulletin of the Korean Chemical Society 26 :1560–4.
  • Ianesko, F., C. Alves de Lima, C. Antoniazzi, E. R. Santana, J. V. Piovesan, A. Spinelli, A. Galli, and E. Guimaraes de Castro. 2018. Simultaneous electrochemical determination of hydroquinone and bisphenol A using a carbon paste electrode modified with silver nanoparticles. Electroanalysis 30(9):1946–55. doi: 10.1002/elan.201800074.
  • Igrec, B., M. Bosiljevac, Z. Sipus, D. Babic, and S. Rudan. 2016. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology. In Proceedings of the SPIE 9754. http://proceedings.spiedigitallibrary.org/
  • Inoue, K., K. Kato, Y. Yoshimura, T. Makino, and H. Nakazawa. 2000. Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. Journal of Chromatography B 749(1):17–23. doi: 10.1016/S0378-4347(00)00351-0.
  • Jerance, N., N. Bednar, and G. Stojanovic. 2013. An ink-jet printed eddy current position sensor. Sensors (Basel, Switzerland) 13(4):5205–19. doi: 10.3390/s130405205.
  • Jun, S. C. 2015. Fundamental of graphene. In Graphene-based energy devices. ed A. Rashid Bin Mohd Yusof, 1–48. 1st ed. Weinheim, Germany: Wiley-VCH Verlag GmbH&Co.
  • Kadimisetty, K.,. I. M. Mosa, S. Malla, J. E. Satterwhite-Warden, T. M. Kuhns, R. C. Faria, N. H. Lee, and J. F. Rusling. 2016. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosensors and Bioelectronics 77:188–93. doi: 10.1016/j.bios.2015.09.017.
  • Kalambate, P. K., C. R. Rawool, S. P. Karna, and A. K. Srivastava. 2016. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode. Material Science and Engineering C 69:453–61. doi: 10.1016/j.msec.2016.06.077.
  • Kesner, S. B, and R. D. Howe. 2011. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing. IEEE/ASME Transactions on Mechatronics : a Joint Publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division PP(99):1–5. 21874102 doi: 10.1109/TMECH.2011.2160353
  • Kit-Anan, W., A. Olarnwanich, C. Sriprachuabwong, C. Karuwan, A. Tuantranont, A. Wisitsoraat, W. Srituravanich, and A. Pimpin. 2012. Disposable paper-based electrochemical sensor utilizing inkjet-printed polyanilin modified screen-printed carbon electrode for ascorbic detection. Journal of Electroanalytical Chemistry 685:72–8. doi: 10.1016/j.jelechem.2012.08.039.
  • Kuklenyik, Z., J. Ekong, C. D. Cutchins, L. L. Needham, and A. M. Calafat. 2003. Simultaneous measurement of urinary bisphenol A and alkylphenols by automated solid-phase extractive derivatization gas chromatography/mass spectrometry. Analytical Chemistry 75(24):6820–5. doi: 10.1021/ac0303158.
  • Laszczak, P., L. Jiang, D. L. Bader, D. Moser, and S. Zahedi. 2015. Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications. Medical Engineering and Physics 37:32–137.
  • Lei, Y., L. Fang, M. S. H. Akash, Z. Liu, W. Shi, and S. Chen. 2013. Development and comparison of two competitive ELISAs for the detection of bisphenol A in human urine. Analytical Methods 5(21):6106–13. doi: 10.1039/c3ay41023d.
  • Leonardi, A., M. Cofini, D. Rigante, L. Lucchetti, C. Cipolla, L. Penta, and S. Esposito. 2017. The effect of bisphenol A on puberty: A critical review of the medical literature. International Journal of Environmental Research and Public Health 14(9):1044. doi: 10.3390/ijerph14091044.
  • Li, J., D. Kuang, Y. Feng, F. Zhang, and M. Liu. 2011. Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchimica Acta 172(3–4):379–86. doi: 10.1007/s00604-010-0512-0.
  • Li, Y., X. Zhai, X. Liu, L. Wang, H. Liu, and H. Wang. 2016. Electrochemical determination of bisphenol A ar ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–9. doi: 10.1016/j.talanta.2015.11.010.
  • Lind, J. U., T. A. Busbee, A. D. Valentine, F. S. Pasqualini, H. Yuan, M. Yadid, S.-J. Park, A. Kotikian, A. P. Nesmith, P. H. Campbell., et al. 2017. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature Materials 16(3):303–8. doi: 10.1038/nmat4782.
  • Mandoon, C. A., L. J. Blum, and C. A. Marquette. 2016. Adding biomolecular recognition capability to 3D-printed objects. Analytical Chemistry 88:10767–72. doi: 10.1021/acs.analchem.6b03426.
  • Messaoud, B. N., M. E. Ghica, C. Dridi, M. B. Ali, and C. M. A. Brett. 2017. Electrochemical sensor baed on Multiwalled carbon nanotubes and gold nanoparticles modified electrode for the sensitive detection of bisphenol A. Sensors and Actuators B 253:513–22. doi: 10.1016/j.snb.2017.06.160.
  • Morgan, M. K., P. A. Jones, A. M. Calafat, X. Ye, C. W. Croghan, J. C. Chuang, N. K. Wilson, M. S. Clifton, Z. Figueroa, and L. S. Sheldon. 2011. Assessing the quantitative relationships between preschool children`s exposure to bisphenol A by route and urinary biomonitoring. Environmental Science and Technology 45(12):5309–16. doi: 10.1021/es200537u.
  • Nkosi, D., J. Pillay, K. I. Ozoemena, K. Nouneh, and M. Oyama. 2010. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers. Physical Chemistry Chemical Physics 12(3):604–13. doi: 10.1039/b918754e.
  • Ouchi, K., and S. Watanabe. 2002. Measurement of bisphenol A in human urine using liquid chromatography with multi-channel coulometric electrochemical detection. Journal of Chromatography B 780(2):365–70. doi: 10.1016/S1570-0232(02)00547-0.
  • Parnianchi, F., M. Nazari, J. Maleki, and M. Mohebi. 2018. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. International Nano Letters 8(4):229–39. doi: 10.1007/s40089-018-0253-3.
  • Pogacean, F., A. R. Biris, C. Socaci, M. Coros, L. Magerusan, M. C. Rosu, M. D. Lazar, G. Borodi, and S. Pruneanu. 2016. Graphene–bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A. Nanotechnology 27(48):484001. doi: 10.1088/0957-4484/27/48/484001.
  • Portaccio, M., A. Di Tuoro, F. Arduini, M. Lepore, D. G. Mita, N. Diano, L. Mita, and D. Moscone. 2010. A thionine-modified carbon paste amperometric biosensor for cathecol and bisphenol A determination. Biosensors and Bioelectronics 25(9):2003–8. doi: 10.1016/j.bios.2010.01.025.
  • Pruneanu, S., A. R. Biris, F. Pogacean, C. Socaci, M. Coros, M. C. Rosu, F. Watanabe, and A. S. Biris. 2015. The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta 154:197–204. doi: 10.1016/j.electacta.2014.12.046.
  • Sajiki, J., K. Takahashi, and J. Yonekubo. 1999. Sensitive method for the determination of bisphenol A in serum using two systems of high-performance liquid chromatography. Journal of Chromatography B 736(1–2):255–61. doi: 10.1016/S0378-4347(99)00471-5.
  • Sanz-Izquierdo, B., and E. A. Parker. 2014. 3-D printing of elements in frequency selective arrays. IEEE Transactions on Antennas and Propagation 62(12):6060–6. doi: 10.1109/TAP.2014.2359470.
  • Shi, R., J. Liang, Z. Zhao, A. Liu, and Y. Tian. 2017. An electrochemical bisphenol A sensor based on one step electrochemical reduction of cuprous wrapped graphene oxide nanoparticles modified electrode. Talanta 169:37–43. doi: 10.1016/j.talanta.2017.03.042.
  • Sidwaba, U., N. Ntshongontshi, U. Feleni, L. Wilson, T. Waryo, and E. I. Iwuoha. 2019. Manganese peroxidase-based electro-oxidation on bisphenol A at hydrogellic polyaniline–titania nanocomposite-modified glassy carbon electrode. Electrocatalysis. https://doi.org/10.1007/s12678-019-0510-x
  • Srinivas, G., Y. Zhu, R. Piner, N. Skipper, M. Ellerby, and R. Ruoff. 2010. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3):630–5. doi: 10.1016/j.carbon.2009.10.003.
  • Staples, C. A., P. B. Dorn, G. M. Klecka, S. T. O'Block, and L. R. Harris. 1998. A review of the environmental fate, effects, and exposure of bisphenol A. Chemosphere 36(10):2149–73.
  • Staymates, M. E., W. A. MacCrehan, J. L. Staymates, R. R. Kunz, T. Mendum, T. H. Ong, G. Geurtsen, G. J. Gillen, and B. A. Craven. 2016. Biomimetic sniffing improves the detection performance of a 3D-printed nose of a dog and a commercial trace vapour detector. Scientific Reports 6:36876.
  • Stefan-van Staden, R.-I., L. A. Gugoaşă, B. Calenic, J. F. van Staden, and J. Legler. 2014. Screening of children saliva samples for bisphenol A using stochastic, amperometric and multimode microsensors. Analytical Chemistry Research 1:1–7. doi: 10.1016/j.ancr.2014.06.001.
  • Sun, Y., M. Irie, N. Kishikawa, M. Wada, N. Kuroda, and K. Nakashima. 2004. Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomedical Chromatography 18(8):501–7. doi: 10.1002/bmc.345.
  • Tian, C., J. T. Wang, and X. L. Song. 2009. Sediment–water interactions of bisphenol A under simulated marine conditions. Water, Air, and Soil Pollution 199(1-4):301–10. doi: 10.1007/s11270-008-9879-5.
  • Tsukioka, T.,. J. Brock, S. Graiser, J. Nguyen, H. Nakazawa, and T. Makino. 2003. Determination of trace amounts of bisphenol A in urine by negative-ion-chemical-ionization-gas chromatography/mass spectrometry. Analytical Sciences 191:151–3. doi: 10.2116/analsci.19.151.
  • Vandenberg, L. N., I. Chahoud, J. J. Heindel, V. Padmanabhan, F. J. R. Paumgartten, and G. Schoenfelder. 2010. Urinary, circulating and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environmental Health Perspectives 118(8):1055–70. doi: 10.1289/ehp.0901716.
  • Wan, J., Y. X. Si, C. Li, and C. Zhang. 2016. Bisphenol A electrochemical sensors based on multi-walled carbon nanotubes/polythiophene/Pt nanocomposites modified electrode. Analytical Methods 8(16):3333–8. doi: 10.1039/C6AY00850J.
  • Wang, Y. C., D. Cokeliler, and S. Gunasekaran. 2015. Reduced graphene oxide/carbon nanotube/gold nanoparticles nanocomposite functionalized screen-printed electrode for sensitive electrochemical detection of endocrine disruptor bisphenol A. Electroanalysis 27(11):2527–36. doi: 10.1002/elan.201500120.
  • Watanabe, T., H. Yamamoto, K. Inoue, A. Yamaguchi, Y. Yoshimura, K. Kato, H. Nakazawa, N. Kuroda, and K. Nakashima. 2001. Development of sensitive high-performance liquid chromatography with fluorescence detection using 4-(4,5-diphenyl-1H-imidazol-2-yl)-benzoul chloride as a labelling reagent for determination of bisphenol A in plasma samples. Journal of Chromatography B 762(1):1–7. doi: 10.1016/S0378-4347(01)00287-0.
  • Watkins, D. J., B. N. Sanchez, M. M. Tellez-Rojo, J. M. Lee, A. Mercado-Garcia, C. Blank-Goldenberg, K. E. Peterson, and J. D. Meeker. 2017. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environmental Research 159:143–51. doi: 10.1016/j.envres.2017.07.051.
  • Xu, J., Y. Wang, and S. Hu. 2017. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchimica Acta 184(1):1–44. doi: 10.1007/s00604-016-2007-0.
  • Xu, Y., X. Wu, X. Guo, B. Kong, M. Zhang, X. Qian, S. Mi, and W. Sun. 2017. The boom in 3D-printed sensor technology. Sensors 17(5):1166. doi: 10.3390/s17051166.
  • Yamada, H., I. Furuta, E. H. Kato, S. Kataoka, Y. Usuki, G. Kobashi, F. Sata, R. Kishi, and S. Fujimoto. 2002. Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester. Reproductive Toxicology 16(6):735–9. doi: 10.1016/S0890-6238(02)00051-5.
  • Yang, L., H. Zhao, S. M. Fan, B. C. Li, and P. C. Li. 2014. A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle @ TiO2 functionalized SiC. Analytica Chimica Acta 852 :28–36. doi: 10.1016/j.aca.2014.08.037.
  • Yang, S. H., A. A. Morgan, H. P. Nguyen, H. Moore, B. J. Figard, and K. A. Schug. 2011. Quantitative determination of bisphenol A from human saliva using bulk derivatization and trap-and-elute liquid chromatography coupled to electrospray ionization mass spectrometry. Environmental Toxicology and Chemistry 30(6):1243–51. doi: 10.1002/etc.498.
  • Yin, H. S., Y. L. Zhou, and S. Y. Ai. 2009. Preparation and characterization of cobalt phtalocyanince modified carbon paste electrode for bisphenol A detection. Journal of Electroanalytical Chemistry 626(1–2):80–8. doi: 10.1016/j.jelechem.2008.11.004.
  • Yu, X. W., Y. K. Chen, L. P. Chang, L. Zhou, F. X. Tang, and X. P. Wu. 2013. β-cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sensors and Actuators B 186:648–56. doi: 10.1016/j.snb.2013.06.089.
  • Yu, Z., Y. Luan, H. Li, W. Wang, X. Wang, and Q. Zhang. 2019. A disposable electrochemical aptasensor using single-stranded DNA-methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol A. Sensors and Actuators B 284:73–80. doi: 10.1016/j.snb.2018.12.126.
  • Zanello, P. 2003. Inorganic Electrochemistry:Theory, Practice and Application. Cambridge: The Royal Society of Chemistry
  • Zhu, L. L., Y. H. Cao, and G. Q. Cao. 2014. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A. Biosensors and Bioelectronics 54:258–61.
  • Zhu, Y., C. Zhou, X. Yan, Y. Yan, and Q. Wang. 2015. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Analytica Chimica Acta 883:81–9. doi: 10.1016/j.aca.2015.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.