296
Views
8
CrossRef citations to date
0
Altmetric
Bioanalytical

Chemiluminescent and Colorimetric Aptamer-Based Assays of Human α-Thrombin

, , , &
Pages 140-151 | Received 20 May 2019, Accepted 03 Jul 2019, Published online: 14 Jul 2019

References

  • Agyei, D., C. Acquah, K. X. Tan, H. K. Hii, S. R. C. K. Rajendran, C. C. Udenigwe, and M. K. Danquah. 2018. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food. Analytical and Bioanalytical Chemistry 410(2): 297–306. doi: 10.1007/s00216-017-0599-9.
  • Baldrich, E., A. Restrepo, and C. K. O’Sullivan. 2004. Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Analytical Chemistry 76(23):7053–63. doi: 10.1021/ac049258o.
  • Bodulev, O. L., A. V. Gribas, and I. Y. Sakharov. 2018. Microplate chemiluminescent assay for HBV DNA detection using 3-(10′-phenothiazinyl)propionic acid/N-morpholinopyridine pair as enhancer of HRP-catalyzed chemiluminescence. Analytical Biochemistry 543: 33–6. doi: 10.1016/j.ab.2017.11.026.
  • Carrascosa, L. G., C. S. Huertas, and L. M. Lechuga. 2016. Prospects of optical biosensors for emerging label-free RNA analysis. Trends in Analytical Chemistry 80: 177–89. doi: 10.1016/j.trac.2016.02.018.
  • Cheung, Y.-W., R. M. Dirkzwager, W.-C. Wong, J. Cardoso, J. D. Neves Costa, and J. A. Tanner. 2018. Aptamer-mediated plasmodium-specific diagnosis of malaria. Biochimie 145: 131–6. doi: 10.1016/j.biochi.2017.10.017.
  • Childs, R. E., and W. G. Bardsley. 1975. The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochemical Journal 145(1): 93–103. doi: 10.1042/bj1450093.
  • Deng, B., Y. Lin, C. Wang, F. Li, Z. Wang, H. Zhang, X.-F. Li, and X. C. Le. 2014. Aptamer binding assays for proteins: The thrombin example. A review. Analytica Chimica Acta 837: 1–15. doi: 10.1016/j.aca.2014.04.055.
  • Du, Y., and S. Dong. 2017. Nucleic acid biosensors: Recent advances and perspectives. Analytical Chemistry 89(1): 189–215. doi: 10.1021/acs.analchem.6b04190.
  • Feng, C., S. Dai, and L. Wang. 2014. Optical aptasensors for quantitative detection of small biomolecules: A review. Biosensors and Bioelectronics 59: 64–74. doi: 10.1016/j.bios.2014.03.014.
  • Fujii, T., P. Podbevsek, J. Plavec, and N. Sugimoto. 2017. Effects of metal ions and cosolutes on G-quadruplex topology. Journal of Inorganic Biochemistry 166: 190–8. doi: 10.1016/j.jinorgbio.2016.09.001.
  • Gribas, A. V., and I. Y Sakharov. 2018. Homogeneous chemiluminescent determination of mercury(II) using a peroxidase-mimicking DNAzyme assay. Analytical Letters 51(9): 1280–90. doi: 10.1080/00032719.2017.1378229.
  • Hasanzadeh, M., N. Shadjou, and M. de la Guardia. 2017. Aptamer-based assay of biomolecules: Recent advances in electro-analytical approach. Trends in Analytical Chemistry 89: 119–32. doi: 10.1016/j.trac.2017.02.003.
  • He, Q., Y. Chen, D. Shen, X. Cui, C. Zhang, H. Yang, W. Zhong, S. A. Eremin, Y. Fang, and S. Zhao. 2019. Development of a surface plasmon resonance immunosensor and ELISA for 3-nitrotyrosine in human urine. Talanta 195: 655–61. doi: 10.1016/j.talanta.2018.11.110.
  • Kolosova, A. Y., and I. Y. Sakharov. 2019. Triple amplification strategy for improved efficiency of microplate-based assay for chemiluminescent DNA detection. Analytical Letters 52(8):1352–62. doi: 10.1080/00032719.2018.1539091.
  • Kosman, J., and B. Juskowiak. 2011. Peroxidase-mimicking DNAzymes for biosensing applications: A review. Analytica Chimica Acta 707(1/2):7–17. doi: 10.1016/j.aca.2011.08.050.
  • Kulmacz, R. J. 1986. Prostaglandin H synthase and hydroperoxides: Peroxidase reaction and inactivation kinetics. Archives of Biochemistry and Biophysics 249(2):273–85. doi: 10.1016/0003-9861(86)90003-2.
  • Li, T., E. Wang, and S. Dong. 2008. G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chemical Communications 31: 3654–6. doi: 10.1039/b805565c.
  • Li, D., Y. Cui, C. Morisseau, S. J. Gee, C. S. Bever, X. Liu, J. Wu, B. D. Hammock, and Y. Ying. 2017. Nanobody based immunoassay for human soluble epoxide hydrolase detection usingpolymeric horseradish peroxidase (polyHRP) for signal enhancement: The rediscovery of polyHRP? Analytical Chemistry 89(11): 6248–56. doi: 10.1021/acs.analchem.7b01247.
  • Li, Z., X. Zhang, X. Hu, J. Tian, H. Kang, D. Guo, J. Liu, and L. Qu. 2018. Development of an indirect ELISA assay for detecting antibodies against mammalian reovirus in pigs. Journal of Virology Methods 262: 61–4. doi: 10.1016/j.jviromet.2018.07.008.
  • Li, F., Z. Yu, X. Han, and R. Y. Lai. 2019. Electrochemical aptamer-based sensors for food and water analysis: A review. Analytica Chimica Acta 1051: 1–23. doi: 10.1016/j.aca.2018.10.058.
  • Liu, J., Z. Cao, and Y. Lu. 2009. Functional nucleic acid sensors. Chemical Reviews 109(5): 1948–98. doi: 10.1021/cr030183i.
  • Liu, Y., H. Yan, J. Shangguan, X. Yang, M. Wang, and W. Liu. 2018. A fluorometric aptamer-based assay for ochratoxin A using magnetic separation and a cationic conjugated fluorescent polymer. Microchimica Acta 185(9): 427–33. doi: 10.1007/s00604-018-2962-8.
  • Marzocchi, E., S. Grilli, L. Della Ciana, L. Prodi, M. Mirasoli, and A. Roda. 2008. Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. Analytical Biochemistry 377(2): 189–94. doi: 10.1016/j.ab.2008.03.020.
  • Maruyama, Y., T. Matsushita, R. Ueoka, and F. Hirata. 2011. Solvent and salt effects on structural stability of human telomere. Journal of Physical Chemisty B 115(10): 2408–16. doi: 10.1021/jp1096019.
  • Naves, F. F., F. G. Oliveira, J. M. Bicalho, P. S. Santos, R. A. Machado-de-Ávila, C. Chavez-Olortegui, R. C. Leite, and J. K. P. Reis. 2019. Serological diagnosis of equine infectious anemia in horses, donkeys and mules using an ELISA with a gp45 synthetic peptide as antigen. Journal of Virology Methods 266: 49–57. doi: 10.1016/j.jviromet.2018.12.009.
  • Osaka, T., T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, and H. Iida. 2006. Synthesis of magnetic nanoparticles and their application to bioassays. Analytical and Bioanalytical Chemistry 384(3): 593–600. doi: 10.1007/s00216-005-0255-7.
  • Sakharov, I. 2018. Microplate chemiluminescent assay for DNA detection using apoperoxidaseoligonucleotide as capture conjugate and HRP-streptavidin signaling system. Sensors 18(4): 1289–99. doi: 10.3390/s18041289.
  • Sakharov, I. Y., and M. M. Vdovenko. 2013. Mechanism of action of 4-dialkylaminopyridines as secondary enhancers in enhanced chemiluminescence reaction. Analytical Biochemistry 434(1): 12–4. doi: 10.1016/j.ab.2012.10.030.
  • Sharma, T. K., J. G. Bruno, and A. Dhiman. 2017. ABCs of DNA aptamer and related assay development. Biotechnology Advances 35(2): 275–301. doi: 10.1016/j.biotechadv.2017.01.003.
  • Tasset, D. M., M. F. Kubik, and W. Steiner. 1997. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology 272(5): 688–98. doi: 10.1006/jmbi.1997.1275.
  • Vdovenko, M. M., L. Della Ciana, and I. Yu. Sakharov. 2009. 3-(10′-Phenothiazinyl)propane-1-sulfonate is a potent enhancer of soybean peroxidase-induced chemiluminescence. Analytical Biochemistry 392(1): 54–8. doi: 10.1016/j.ab.2009.05.031.
  • Vdovenko, M. M., A. S. Demiyanova, T. A. Chemleva, and I. Yu. Sakharov. 2012. Optimization of horseradish peroxidase-catalyzed enhanced chemiluminescence reaction by full factorial design. Talanta 94: 223–6. doi: 10.1016/j.talanta.2012.03.025.
  • Wen, Y., Wang, L. L. Xu, L. Li, A S. Ren, C. Cao, N. Jia, A. Aldalbahi, S. Song, J. Shi, J., et al. 2016. Electrochemical detection of PCR amplicons of Escherichia coli genome based on DNA nanostructural probes and polyHRP enzyme. The Analyst 141(18): 5304–10. doi: 10.1039/C6AN01435F.
  • Xiong, E., X. Yan, X. Zhang, Y. Liu, J. Zhou, and J. Chen. 2017. Exonuclease III–assisted cascade signal amplification strategy for label-free and ultrasensitive electrochemical detection of nucleic acids. Biosensors and Bioelectronics 87: 732–6. doi: 10.1016/j.bios.2016.09.036.
  • Yang, R., Z. Tang, J. Yan, H. Kang, Y. Kim, Z. Zhu, and W. Tan. 2008. Noncovalent assembly of carbon nanotubes and single-stranded DNA: An effective sensing platform for probing biomolecular interactions. Analytical Chemistry 80(19): 7408–13. doi: 10.1021/ac801118p.
  • Ying, N., T. Sun, Z. Chen, G. Song, B. Qi, S. Bu, X. Sun, J. Wan, and Z. Li. 2017. Colorimetric detection of microRNA based hybridization chain reaction for signal amplification and enzyme for visualization. Analytical Biochemistry 528: 7–12. doi: 10.1016/j.ab.2017.04.007.
  • Zeng, G., C. Zhang, D. Huang, C. Lai, L. Tang, Y. Zhou, P. Xu, H. Wang, L. Qin, and M. Cheng. 2017. Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection. Biosensors and Bioelectronics 90: 542–8. doi: 10.1016/j.bios.2016.10.018.
  • Zhang, L., J. Zhu, T. Li, and E. Wang. 2011. Bifunctional colorimetric oligonucleotide probe based on a G-quadruplex DNAzyme molecular beacon. Analytical Chemistry 83(23): 8871–6. doi: 10.1021/ac2006763.
  • Zhao, Q., X.-F. Li, and X. C. Le. 2008. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Analytical Chemistry 80(10): 3915–20. doi: 10.1021/ac702567x.
  • Zhao, Q., X. Lu, C.-G. Yuan, X.-F. Li, and X. C. Le. 2009. Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma − mass spectrometry detection. Analytical Chemistry 81(17): 7484–9. doi: 10.1021/ac900961y.
  • Zhou, Z., M. Liu, and J. Jiang. 2018. The potential of aptamers for cancer research. Analytical Biochemistry 549: 91–5. doi: 10.1016/j.ab.2018.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.