235
Views
3
CrossRef citations to date
0
Altmetric
Bioanalytical

Label-Free Electrochemiluminescence Immunosensor for the Determination of Cardiac Troponin I Using a Cadmium Sulfide–Molybdenum (IV) Sulfide Nanocomposite Modified Glassy Carbon Electrode

, , , , &
Pages 1416-1427 | Received 16 Oct 2019, Accepted 21 Dec 2019, Published online: 03 Jan 2020

References

  • Abdolrahim, M., M. Rabiee, S. N. Alhosseini, M. Tahriri, S. Yazdanpanah, and L. Tayebi. 2015. Development of optical biosensor technologies for cardiac troponin recognition. Analytical Biochemistry 485:1–10. doi:10.1016/j.ab.2015.06.003.
  • Cao, J. T., F. R. Liu, X. L. Fu, J. X. Ma, S. W. Ren, and Y. M. Liu. 2019. A novel electrochemiluminescence resonance energy transfer system for simultaneous determination of two acute myocardial infarction markers using versatile gold nanorods as energy acceptors. Chemical Communications 55 (19):2829–32. doi:10.1039/C9CC00563C.
  • Cao, J. T., H. Wang, and Y. M. Liu. 2015. Petal-like CdS nanospheres-based electrochemiluminescence aptasensor for detection of IgE with gold nanoparticles amplification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 151:274–79. doi:10.1016/j.saa.2015.06.104.
  • Ding, S. N., J. J. Xu, and H. Y. Chen. 2006. Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chemical Communications 34:3631–33. doi:10.1039/b606073k.
  • Fang, Y. M., J. J. Sun, A. H. Wu, X. L. Su, and G. N. Chen. 2008. Catalytic electrogenerated chemiluminescence and nitrate reduction at CdS nanotubes modified glassy carbon electrode. Langmuir 25 (1):555–60. doi:10.1021/la802650e.
  • Gao, Y. P., K. J. Huang, X. Wu, Z. Q. Hou, and Y. Y. Liu. 2018. MoS2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor. Journal of Alloys and Compounds 741:174–81. doi:10.1016/j.jallcom.2018.01.110.
  • Jie, G. F., B. Liu, H. C. Pan, J. J. Zhu, and H. Y. Chen. 2007. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Analytical Chemistry 79 (15):5574–81. doi:10.1021/ac062357c.
  • Li, F., J. X. Chen, D. F. Zhang, W. F. Fu, Y. Chen, Z. H. Wen, and X. J. Lv. 2018. Heteroporous MoS2/Ni3S2 towards superior electrocatalytic overall urea splitting. Chemical Communications 54 (41):5181–84. doi:10.1039/C8CC01404C.
  • Liu, G., M. Qi, Y. Zhang, C. Cao, and E. M. Goldys. 2016. Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Analytica Chimica Acta 27:18–24. doi:10.1016/j.aca.2015.12.023.
  • Ma, X., C. Q. Wang, G. W. Wang, G. S. Li, S. Y. Li, J. Wang, and Y. T. Song. 2018. Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+: Y3Al5O12@ NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7, for enhanced solar-light photocatalytic conversions of nitrite and sulfite. Journal of Industrial and Engineering Chemistry 66:141–57. doi:10.1016/j.jiec.2018.05.024.
  • Marquette, C. A., F. Bouteille, B. P. Corgier, A. Degiuli, and L. J. Blum. 2009. Disposable screen-printed chemiluminescent biochips for the simultaneous determination of four point-of-care relevant proteins. Analytical and Bioanalytical Chemistry 393 (4):1191–98. doi:10.1007/s00216-008-2503-0.
  • Niotis, A. E., C. Mastichiadis, P. S. Petrou, I. Christofidis, S. E. Kakabakos, A. Siafaka-Kapadai, and K. Misiakos. 2010. Dual-cardiac marker capillary waveguide fluoroimmunosensor based on tyramide signal amplification. Analytical and Bioanalytical Chemistry 396 (3):1187–96. doi:10.1007/s00216-009-3278-7.
  • Shen, W., D. Tian, H. Cui, D. Yang, and Z. P. Bian. 2011. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosensors and Bioelectronics 27 (1):18–24. doi:10.1016/j.bios.2011.05.022.
  • Shi, G. F., J. T. Cao, J. J. Zhang, K. J. Huang, Y. M. Liu, Y. H. Chen, and S. W. Ren. 2014. Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen. The Analyst 220:340–46. doi:10.1039/C4AN01311E.
  • Shi, G. F., J. T. Cao, J. J. Zhang, Y. M. Liu, Y. H. Chen, and S. W. Ren. 2015. An electrochemiluminescence aptasensor based on flowerlike CdS–MoS2 composites and DNAzyme for detection of immunoglobulin E. Sensors and Actuators B: Chemical 220:340–46. doi:10.1016/j.snb.2015.05.079.
  • Tang, M., Z. X. Zhou, S. G. Li, F. Zhao, and S. Q. Liu. 2018. Electrochemiluminescent detection of cardiac troponin I by using soybean peroxidase labeled-antibody as signal amplifier. Talanta 180:47–53. doi:10.1016/j.talanta.2017.12.015.
  • Wang, K., Q. Liu, X. Y. Wu, Q. M. Guan, and H. N. Li. 2010. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta 82 (1):372–76. doi:10.1016/j.talanta.2010.04.054.
  • Xu, J., and X. J. Cao. 2015. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chemical Engineering Journal 260:642–48. doi:10.1016/j.cej.2014.07.046.
  • Xu, R. C., X. L. Wang, S. Z. Zhang, Y. Xia, X. H. Xia, J. B. Wu, and J. P. Tu. 2018. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. Journal of Power Sources 374:107–12. doi:10.1016/j.jpowsour.2017.10.093.
  • Ye, J., L. P. Zhu, M. X. Yan, Q. J. Zhu, Q. Q. Lu, J. S. Huang, H. Cui, and X. R. Yang. 2018. Dual-wavelength ratiometric electrochemiluminescence immunosensor for cardiac troponin I detection. Analytical Chemistry 91 (2):1524–31. doi:10.1021/acs.analchem.8b04640.
  • Zhang, L., C. Y. Xiong, H. J. Wang, R. Yuan, and Y. Q. Chai. 2017. A sensitive electrochemiluminescence immunosensor for cardiac troponin I detection based on dual quenching of the self-enhanced Ru (II) complex by folic acid and in Situ generated oxygen. Sensors and Actuators B: Chemical 241:765–72. doi:10.1016/j.snb.2016.10.138.
  • Zhao, H. M., Y. X. Li, B. Tan, Y. B. Zhang, X. C. Chen, and X. Quan. 2017. PEGylated molybdenum dichalcogenide (PEG-MoS2) nanosheets with enhanced peroxidase-like activity for the colorimetric detection of H2O2. New Journal of Chemistry 41 (14):6700–8. doi:10.1039/C7NJ00899F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.