708
Views
42
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical Determination of Tartrazine Using a Graphene/Poly(L-Phenylalanine) Modified Pencil Graphite Electrode

, &
Pages 1683-1703 | Received 12 Dec 2019, Accepted 11 Jan 2020, Published online: 24 Jan 2020

References

  • Aktas, A. H., and G. P. Ertokus. 2010. Spectral simultaneous determinatıon of tartrazine, allurared, sunset yellow and caramel in drink sample by chemometric method. Analytical Chemistry 29 (2):107–16.
  • Arvas, M. B., O. Gorduk, M. Gencten, and Y. Sahin. 2019. Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly(vinyl chloride) coated pencil graphite electrode. Analytical Methods 30:3874–81. doi:10.1039/C9AY01275C.
  • Bard, A. J., and L. R. Faulkner. 2001. Electrochemical methods: Fundamentals and applications. 2nd ed. New York, NY: John Wiley & Sons.
  • Berzas, J. J., J. R. Flores, M. J. V. Llerena, and N. R. Farinas. 1999. Spectrophotometric resolution of ternary mixtures of Tartrazine, Patent Blue V and Indigo Carmine in commercial products. Analytica Chimica Acta 391:353–64. doi:10.1016/S0003-2670(99)00215-9.
  • Borzelleca, J. F., and J. B. Hallagan. 1988. Chronic toxicity/carcinogenicity studies of ED & C Yellow No. 5 (Tartrazine) in rats. Food and Chemical Toxicology 26 (3):179–87. doi:10.1016/0278-6915(88)90117-2.
  • Brownson, D. A. C., and C. E. Banks. 2014. The handbook of graphene electrochemistry. London: Springer Verlag.
  • Chao, M., and X. Ma. 2015. Convenient electrochemical determination of sunset yellow and tartrazine in food samples using a poly(L-phenylalanine)-modified glassy carbon electrode. Food Analytical Methods 8 (1):130–8. doi:10.1007/s12161-014-9879-6.
  • Chebotarev, A., A. Koicheva, K. Bevziuk, K. Pliuta, and D. Snigur. 2019. Simultaneous determination of Sunset Yellow and Tartrazine in soft drinks on carbon-paste electrode modified by silica impregnated with cetylpyridinium chloride. Journal of Food Measurement and Characterization 19:1964–72. doi:10.1007/s11694-019-00115-6.
  • Dorraji, P. S., and F. Jalali. 2017. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food Chemistry 227:73–7. doi:10.1016/j.foodchem.2017.01.071.
  • Dudkina, A. A., T. N. Volgina, N. V. Saranchina, N. A. Gavrilenko, and M. A. Gavrilenko. 2019. Colorimetric determination of food colourants using solid phase extraction into polymethacrylate matrix. Talanta 202:186–9. doi:10.1016/j.talanta.2019.04.055.
  • Gan, T., J. Sun, W. Meng, L. Song, and Y. Zhang. 2013. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chemistry 141 (4):3731–7. doi:10.1016/j.foodchem.2013.06.084.
  • Ghoreishi, S. M., M. Behpour, and M. Golestaneh. 2012. Simultaneous determination of Sunset yellow and Tartrazine in soft drinks using gold nanoparticles carbon paste electrode. Food Chemistry 132 (1):637–41. doi:10.1016/j.foodchem.2011.10.103.
  • Gorduk, O. 2019. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube – over-oxidized poly(3,4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters. doi: 10.1080/00032719.2019.1693583.
  • He, Q., J. Liu, X. Liu, G. Li, P. Deng, J. Liang, and D. Chen. 2018. Sensitive and selective detection of tartrazine based on tio2-electrochemically reduced graphene oxide composite-modified electrodes. Sensors 18 (6):1911. doi:10.3390/s18061911.
  • Hla, S. W. 2012. Graphene conductivity measurements pick up. Nature Nanotechnology 7 (11):693–4. doi:10.1038/nnano.2012.195.
  • Jampasa, S., W. Siangproh, K. Duangmal, and O. Chailapakul. 2016. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 160:113–24. doi:10.1016/j.talanta.2016.07.011.
  • Karimi, M. A., V. H. Aghaei, A. Nezhadali, and N. Ajami. 2018. Graphitic carbon nitride as a new sensitive material for electrochemical determination of trace amounts of tartrazine in food samples. Food Analytical Methods 11 (10):2907–15. doi:10.1007/s12161-018-1264-4.
  • Kolozof, P. A., A. B. Florou, K. Spyrou, J. Hrbac, and M. I. Prodromidis. 2020. In-situ tailoring of the electrocatalytic properties of screen-printed graphite electrodes with sparked generated molybdenum nanoparticles for the simultaneous voltammetric determination of sunset yellow and tartrazine. Sensors and Actuators B: Chemical 304:127268. doi:10.1016/j.snb.2019.127268.
  • Koyun, O., and Y. Sahin. 2018a. Poly(L-cysteine) modified pencil graphite electrode for determination of sunset yellow in food and beverage samples by differential pulse voltammetry. International Journal of Electrochemical Science 13:159–74. doi:10.20964/2018.01.40.
  • Koyun, O., and Y. Sahin. 2018b. Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: Application in food and water samples. Ionics 24 (10):3187–97. doi:10.1007/s11581-017-2429-7.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2017. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synthetic Metals 233:111–8. doi:10.1016/j.synthmet.2017.09.009.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2018. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russian Journal of Electrochemistry 54 (11):796–808. doi:10.1134/S1023193518110046.
  • Koyun, O., S. Gorduk, M. Gencten, and Y. Sahin. 2019. A novel copper (II) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New Journal of Chemistry 43 (1):85–92. doi:10.1039/C8NJ03721C.
  • Koyun, O., H. Gursu, S. Gorduk, and Y. Sahin. 2017. Highly sensitive electrochemical determination of dopamine with an over oxidized polypyrrole nanofiber pencil graphite electrode. International Journal of Electrochemical Science 12:6428–44. doi:10.20964/2017.07.41.
  • Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101 (1):19–28. doi:10.1016/S0022-0728(79)80075-3.
  • Lee, K. S., M. J. A. Shiddiky, S. H. Park, D. S. Park, and Y. B. Shim. 2008. Electrophoretic analysis of food dyes using a miniaturized microfluidic system. Electrophoresis 29 (9):1910–7. doi:10.1002/elps.200700556.
  • Li, J., M. Liu, J. Jiang, B. Liu, H. Tong, Z. Xu, C. Yang, and D. Qian. 2019. Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow. Sensors and Actuators B: Chemical 288:552–63. doi:10.1016/j.snb.2019.03.028.
  • Majidi, M. R., R. F. B. Baj, and A. Naseri. 2013. Carbon nanotube–ionic liquid (CNT–IL) nanocamposite modified sol-gel derived carbon-ceramic electrode for simultaneous determination of sunset yellow and tartrazine in food samples. Food Analytical Methods 6 (5):1388–97. doi:10.1007/s12161-012-9556-6.
  • Mathiyalagan, S., B. K. Mandal, and Y. C. Ling. 2019. Determination of synthetic and natural colorants in selected green colored foodstuffs through reverse phase-high performance liquid chromatography. Food Chemistry 278:381–7. doi:10.1016/j.foodchem.2018.11.077.
  • Medeiros, R. A., B. C. Lourencao, R. C. Rocha, and O. Fatibello. 2012. Flow injection simultaneous determination of synthetic colorants in food using multiple pulse amperometric detection with a boron-doped diamond electrode. Talanta 99:883–9. doi:10.1016/j.talanta.2012.07.051.
  • Negrete, M. A. A., K. Wrobel, E. Y. Barrientos, A. R. C. Escobosa, F. J. A. Aguilar, and K. Wrobel. 2019. Determination of sulfonated azo dyes in chili powders by MALDI-TOF MS. Analytical and Bioanalytical Chemistry 411:5833–43. doi:10.1007/s00216-019-01965-1.
  • Qiu, X., L. Lu, J. Leng, Y. Yu, W. Wang, M. Jiang, and L. Bai. 2016. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine. Food Chemistry 190:889–95. doi:10.1016/j.foodchem.2015.06.045.
  • Rovina, K., S. Siddiquee, and S. M. Shaarani. 2017. Review of extraction and analytical methods for the determination of tartrazine (E 102) in foodstuffs. Critical Reviews in Analytical Chemistry 47 (4):309–24. doi:10.1080/10408347.2017.1287558.
  • Sabnıs, R. W. 2010. Handbook of biological dyes and stains. Hoboken, NJ: Wiley.
  • Sakthivel, M., M. Sivakumar, S. M. Chen, and K. Pandi. 2018. Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) on terbium hexacyanoferrate for sensitive determination of tartrazine. Sensors and Actuators B: Chemical 256:195–203. doi:10.1016/j.snb.2017.09.086.
  • Sierra, R. P., C. T. Neira, and J. A. Squella. 2017. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs. Sensors and Actuators B: Chemical 240:1257–64. doi:10.1016/j.snb.2016.08.135.
  • Silva, M. L. S., M. B. Q. Garcia, J. L. F. C. Lima, and E. Barrado. 2007. Voltammetric determination of food colorants using a polyallylamine modified tubular electrode in a multicommutated flow system. Talanta 72 (1):282–8. doi:10.1016/j.talanta.2006.10.032.
  • Song, Y. Z., J. M. Xu, J. S. Lv, H. Zhong, Y. Ye, and M. Xie. 2012. Electrochemical reduction of tartrazine at multi-walled carbon nanotube-modified pyrolytic graphite electrode. Russian Journal of Physical Chemistry A 86 (2):303–10. doi:10.1134/S0036024412020306.
  • Sun, S. C., B. C. Hsieh, and M. C. Chuang. 2019. Electropolymerised-hemin-catalysed reduction and analysis of tartrazine and sunset yellow. Electrochimica Acta 319:766–74. doi:10.1016/j.electacta.2019.07.014.
  • Tiwari, S., and M. K. Deb. 2019. Modified silver nanoparticles-enhanced single drop microextraction of tartrazine in food samples coupled with diffuse reflectance Fourier transform infrared spectroscopic analysis. Analytical Methods 11 (28):3552–62. doi:10.1039/C9AY00713J.
  • Xu, H., X. Yang, G. Li, C. Zhao, and X. Liao. 2015. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. Journal of Agricultural and Food Chemistry 63 (30):6707–14. doi:10.1021/acs.jafc.5b02319.
  • Ye, X., Y. Du, D. Lu, and C. Wang. 2013. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine. Analytica Chimica Acta 779:22–34. doi:10.1016/j.aca.2013.03.061.
  • Yıldırım, S., and A. Yaşar. 2018. A Core-shell column approach to fast determination of synthetic dyes in foodstuffs by high-performance liquid chromatography. Food Analytical Methods 11 (6):1581–90. doi:10.1007/s12161-017-1138-1.
  • Zeynali, K. A., and M. Aleshi. 2014. Electrochemical modification of glassy carbon electrode by bismuth-chitosan nanosheets for electrocatalytic reduction and determination of tartrazine. Portugaliae Electrochimica Acta 39:369–79. doi:10.4152/pea.201406369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.