328
Views
16
CrossRef citations to date
0
Altmetric
Biosensors

Photoelectrochemical Immunosensor Based on ZnIn2S4/Bi2Se3 Nanocomposite for the Determination of Cardiac Troponin I

, , , &
Pages 1888-1901 | Received 24 Dec 2019, Accepted 20 Jan 2020, Published online: 31 Jan 2020

References

  • Akter, R. , B. Jeong , Y. M. Lee , J. S. Choi , and M. A. Rahman . 2017. Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor. Biosensors and Bioelectronics 91:637–43. doi:10.1016/j.bios.2017.01.021.
  • Chen, J. , L. Kong , X. Sun , J. Feng , Z. Chen , D. Fan , and Q. Wei . 2018. Ultrasensitive photoelectrochemical immunosensor of cardiac troponin I detection based on dual inhibition effect of Ag@Cu2O core-shell submicron-particles on CdS QDs sensitized TiO2 nanosheets. Biosensors and Bioelectronics 117:340–6. doi:10.1016/j.bios.2018.05.037.
  • Chi, H. , Q. Han , T. Chi , B. Xing , N. Ma , D. Wu , and Q. Wei . 2019. Manganese doped CdS sensitized graphene/Cu2MoS4 composite for the photoelectrochemical immunoassay of cardiac troponin I. Biosensors and Bioelectronics 132:1–7. doi:10.1016/j.bios.2019.02.048.
  • Cho, I. H. , E. H. Paek , Y. K. Kim , J. H. Kim , and S. H. Paek . 2009. Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography. Analytica Chimica Acta 632 (2):247–55. doi:10.1016/j.aca.2008.11.019.
  • Dorraj, G. S. , M. J. Rassaee , A. M. Latifi , B. Pishgoo , and M. Tavallaei . 2015. Selection of DNA aptamers against human cardiac troponin I for colorimetric sensor based dot blot application. Journal of Biotechnology 208:80–6. doi:10.1016/j.jbiotec.2015.05.002.
  • Fan, D. , C. Bao , M. S. Khan , C. Wang , Y. Zhang , Q. Liu , X. Zhang , and Q. Wei . 2018. A novel label-free photoelectrochemical sensor based on N, S-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I. Biosensors and Bioelectronics 106:14–20. doi:10.1016/j.bios.2018.01.050.
  • Feng, J. H. , F. Y. Li , X. J. Li , X. Ren , D. W. Fan , D. Wu , H. M. Ma , B. Du , N. Zhang , and Q. Wei . 2019. An amplification label of core–shell CdSe@CdS QD sensitized GO for a signal-on photoelectrochemical immunosensor for amyloid β-protein. Journal of Materials Chemistry B 7 (7):1142–8. doi:10.1039/C8TB03164A.
  • Feng, J. , F. Li , X. Li , Y. Wang , D. Fan , B. Du , Y. Li , and Q. Wei . 2018. Label-free photoelectrochemical immunosensor for NT-proBNP detection based on La-CdS/3D ZnIn2S4/Au@ZnO sensitization structure. Biosensors and Bioelectronics 117:773–80. doi:10.1016/j.bios.2018.07.015.
  • Gopinathan, P. , A. Sinha , Y. D. Chung , S. C. Shiesh , and G. B. Lee . 2019. Optimization of an enzyme linked DNA aptamer assay for cardiac troponin I detection: Synchronous multiple sample analysis on an integrated microfluidic platform. The Analyst 144 (16):4943–51. doi:10.1039/C9AN00779B.
  • Jiao, L. , L. Zhang , W. Du , H. Li , D. Yang , and C. Zhu . 2019. Au@Pt nanodendrites enhanced multimodal enzyme-linked immunosorbent assay. Nanoscale 11 (18):8798–802. doi:10.1039/C8NR08741E.
  • Jo, H. , J. Her , H. Lee , Y. B. Shim , and C. Ban . 2017. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta 165:442–8. doi:10.1016/j.talanta.2016.12.091.
  • Juntunen, E. , R. Arppe , L. Kalliomaki , T. Salminen , S. M. Talha , T. Myyrylainen , T. Soukka , and K. Pettersson . 2016. Effects of blood sample anticoagulants on lateral flow assays using luminescent photon-upconverting and Eu (III) nanoparticle reporters. Analytical Biochemistry 492:13–20. doi:10.1016/j.ab.2015.09.009.
  • Ko, K. B. , B. D. Ryu , M. Han , C. H. Hong , D. A. Dinh , and T. V. Cuong . 2019. Multidimensional graphene and ZnO-based heterostructure for flexible transparent ultraviolet photodetector. Applied Surface Science 481:524–30. doi:10.1016/j.apsusc.2019.03.163.
  • Kristensen, I. S. , D. J. Mowbray , K. S. Thygesen , and K. W. Jacobsen . 2008. Comparative study of anchoring groups for molecular electronics: Structure and conductance of Au-S-Au and Au-NH2-Au junctions. Journal of Physics: Condensed Matter 20 (37):374101. doi:10.1088/0953-8984/20/37/374101.
  • Lee, S. H. , D. H. Kwon , C. Y. Yim , and S. M. Jeon . 2015. Facile detection of troponin I using dendritic platinum nanoparticles and capillary tube indicators. Analytical Chemistry 87 (9):5004–8. doi:10.1021/acs.analchem.5b00921.
  • Li, D. , J. Lao , C. L. Jiang , C. H. Luo , R. J. Qi , H. C. Lin , R. Huang , G. I. N. Waterhouse , and H. Peng . 2019. Plasmonic Au nanoparticle-decorated Bi2Se3 nanoflowers with outstanding electrocatalytic performance for hydrogen evolution. International Journal of Hydrogen Energy 44 (59):30876–84. doi:10.1016/j.ijhydene.2019.10.041.
  • Li, F. , Y. Lin , and X. C. Le . 2013. Binding-induced formation of DNA three-way junctions and its application to protein detection and DNA strand displacement. Analytical Chemistry 85 (22):10835–41. doi:10.1021/ac402179a.
  • Li, H. , Y. Qiao , J. Li , H. Fang , D. Fan , and W. Wang . 2016. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosensors and Bioelectronics 77:378–84. doi:10.1016/j.bios.2015.09.066.
  • Liu, D. , X. Lu , Y. Yang , Y. Zhai , J. Zhang , and L. Li . 2018. A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform. Analytical and Bioanalytical Chemistry 410 (18):4285–91. doi:10.1007/s00216-018-1076-9.
  • Li, F. , Y. Yu , H. Cui , D. Yang , and Z. Bian . 2013. Label-free electrochemiluminescence immunosensor for cardiac troponin I using luminol functionalized gold nanoparticles as a sensing platform. The Analyst 138 (6):1844–50. doi:10.1039/c3an36805j.
  • Mahadik, M. A. , P. S. Shinde , M. Cho , and J. S. Jang . 2015. Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: Effect of cascading electron–hole transfer. Journal of Materials Chemistry A 3 (46):23597–606. doi:10.1039/C5TA07454A.
  • Masson, J. F. , L. Obando , S. Beaudoin , and K. Booksh . 2004. Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta 62 (5):865–70. doi:10.1016/j.talanta.2003.09.032.
  • Negahdary, M. , and H. Heli . 2019. An electrochemical troponin I peptisensor using a triangular icicle-like gold nanostructure. Biochemical Engineering Journal 151:107326. doi:10.1016/j.bej.2019.107326.
  • Ozcan, B. , and M. K. Sezginturk . 2019. Highly sensitive and cost-effective ITO-based immunosensor system modified by 11-CUTMS: Analysis of SOX2 protein in real human serum. International Journal of Biological Macromolecules 130:245–52. doi:10.1016/j.ijbiomac.2019.02.112.
  • Regan, B. , R. O’Kennedy , and D. Collins . 2018. Point-of-care compatibility of ultra-sensitive detection techniques for the cardiac biomarker troponin I-challenges and potential value. Biosensors ( Biosensors 8 (4):114. doi:10.3390/bios8040.
  • Sharma, A. , C. H. Han , and J. Jang . 2016. Rapid electrical immunoassay of the cardiac biomarker troponin I through dielectrophoretic concentration using imbedded electrodes. Biosensors and Bioelectronics 82:78–84. doi:10.1016/j.bios.2016.03.056.
  • Shen, Q. , M. Liu , Y. Lu , D. Zhang , Z. Cheng , Y. Liu , H. Gao , and Z. Jin . 2019. Label-Free Electrochemical Immunosensor Based on a Functionalized Ionic Liquid and Helical Carbon Nanotubes for the Determination of Cardiac Troponin I. ACS Omega 4 (7):11888–92. doi:10.1021/acsomega.9b01152.
  • Song, J. , J. Wang , X. Wang , W. Zhao , Y. Zhao , S. Wu , Z. Gao , J. Yuan , and C. Meng . 2016. Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay. Biosensors and Bioelectronics 80:614–20. doi:10.1016/j.bios.2016.02.030.
  • Sun, B. , J. Dong , L. Cui , T. Feng , J. Zhu , X. Liu , and S. Ai . 2019. A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor. Biosensors and Bioelectronics 124-125:1–7. doi:10.1016/j.bios.2018.09.100.
  • Tan, Y. , Y. Wang , M. Li , X. Ye , T. Wu , and C. Li . 2017. Enhanced photoelectrochemical immunosensing of cardiac troponin I based on energy transfer between N-acetyl-L-cysteine capped CdAgTe quantum dots and dodecahedral Au nanoparticles. Biosensors and Bioelectronics 91:741–6. doi:10.1016/j.bios.2017.01.040.
  • Tian, Q. , W. Wu , J. Liu , Z. Wu , W. Yao , J. Ding , and C. Jiang . 2017. Dimensional heterostructures of 1D CdS/2D ZnIn2S4 composited with 2D graphene: Designed synthesis and superior photocatalytic performance. Dalton Transactions 46 (9):2770–7. doi:10.1039/C7DT00018A.
  • Ting, C. C. , C. H. Chao , C. Y. Tsai , I. K. Cheng , and F. M. Pan . 2017. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect. Applied Surface Science 416:365–70. doi:10.1016/j.apsusc.2017.04.156.
  • Wang, Z. , S. Dong , M. Gui , M. Asif , W. Wang , F. Wang , and H. Liu . 2018. Graphene paper supported MoS2 nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat. Analytical Biochemistry 543:82–9. doi:10.1016/j.ab.2017.12.010.
  • Wang, M. , H. Yin , N. Shen , Z. Xu , B. Sun , and S. Ai . 2014. Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification. Biosensors and Bioelectronics 53:232–7. doi:10.1016/j.bios.2013.09.069.
  • Wu, S. L. , J. Dou , J. Zhang , and S. F. Zhang . 2012a. A simple and economical one-pot method to synthesize high-quality water soluble CdTe QDs. Journal of Materials Chemistry 22 (29):14573-14578. doi:10.1039/c2jm31409f.
  • Wu, S. , G. Liu , P. Li , H. Liu , and H. Xu . 2012b. A high-sensitive and fast-fabricated glucose biosensor based on Prussian blue/topological insulator Bi2Se3 hybrid film. Biosensors and Bioelectronics 38 (1):289–94. doi:10.1016/j.bios.2012.06.001.
  • Xue, T. Y. , L. P. Mei , Y. T. Xu , Y. L. Liu , G. C. Fan , H. Y. Li , D. Ye , and W. W. Zhao . 2019. Nanoporous semiconductor electrode captures the quantum dots: Toward ultrasensitive signal-on liposomal photoelectrochemical immunoassay. Analytical Chemistry 91 (6):3795–9. doi:10.1021/acs.analchem.9b00170.
  • Yang, G. , H. Ding , D. M. Chen , J. J. Feng , Q. Hao , and Y. F. Zhu . 2018. Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 234:260–7. doi:10.1016/j.apcatb.2018.04.038.
  • Yin, X. H. , P. T. Sheng , F. F. Zhong , V. M. Nguyen , Q. Y. Cai , and C. Grimes . 2016. CdS/ZnIn2S4/TiO2 3D-heterostructures and their photoelectrochemical properties. New Journal of Chemistry 40 (8):6675–85. doi:10.1039/C5NJ02894A.
  • Zhang, X. Y. , S. G. Liu , W. J. Zhang , X. H. Wang , L. Han , Y. Ling , N. B. Li , and H. Q. Luo . 2019b. Photoelectrochemical platform for glucose sensing based on g-C3N4/ZnIn2S4 composites coupled with bi-enzyme cascade catalytic in-situ precipitation. Sensors and Actuators B: Chemical :297:126818. doi:10.1016/j.snb.2019.126818.
  • Zhang, N. , Z. Y. Ma , Y. F. Ruan , W. W. Zhao , J. J. Xu , and H. Y. Chen . 2016. Simultaneous photoelectrochemical immunoassay of dual cardiac markers using specific enzyme tags: A proof of principle for multiplexed bioanalysis. Analytical Chemistry 88 (4):1990–4. doi:10.1021/acs.analchem.5b04579.
  • Zhang, B. H. , H. Wang , J. J. Xi , F. Q. Zhao , and B. Z. Zeng . 2019a. A novel Z-scheme ZnIn2S4/WO3 photocatalyst based photoelectrochemical immunosensor for the sensitive detection of prostate specific antigen. Sensors and Actuators B: Chemical 298: 126835. doi:10.1016/j.snb.2019.126835.
  • Zhang, L. , W. Zhang , H. X. Tao , G. Q. Wang , J. W. Ma , Q. S. Wang , M. Tan , and S. C. Xu . 2017. Preparation of cubic ZnIn2S4 thin films through a tartaric-acid-assisted hydrothermal process. CrystEngComm 19 (26):3619–25. doi:10.1039/C6CE02579J.
  • Zhao, J. H. , S. Wang , S. S. Lu , G. Y. Liu , J. Sun , and X. R. Yang . 2019. Fluorometric and colorimetric dual-readout immunoassay based on an alkaline phosphatase-triggered reaction. Analytical Chemistry 91 (12):7828–34. doi:10.1021/acs.analchem.9b01553.
  • Zhao, W. W. , J. J. Xu , and H. Y. Chen . 2018. Photoelectrochemical immunoassays. Analytical Chemistry 90 (1):615–27. doi:10.1021/acs.analchem.7b04672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.