242
Views
9
CrossRef citations to date
0
Altmetric
Fluorescence

Determination of Kresoxim-Methyl in Water and in Grapes by High-Performance Liquid Chromatography (HPLC) Using Photochemical-Induced Fluorescence and Dispersive Liquid-Liquid Microextraction (DLLME)

, , , , , & show all
Pages 2202-2221 | Received 21 Oct 2019, Accepted 19 Feb 2020, Published online: 06 Mar 2020

References

  • Abreu, S. M., P. Caboni, P. Cabras, V. L. Garau, and A. Alves. 2006. Validation and global uncertainty of a liquid chromatographic with diode array detection method for the screening of azoxystrobin, kresoxim-methyl, trifloxystrobin, famocxadone, pyraclostrobin and fenamidone in grapes and wine. Analytica Chimica Acta 573:291–97. doi:10.1016/j.aca.2006.01.090.
  • Abreu, S. M., M. Correia, P. Herbert, L. Santos, and A. Alves. 2005. Screening of grapes and wine for azoxystrobin, kresoxim-methyl and trifloxystrobin fungicides by HPLC with diode array detection. Food Additives and Contaminants 22:549–56. doi:10.1080/02652030500137918.
  • AGROFIT. 2019. Ministry of Agriculture, Livestock and Supply. Phytosanitary system of pesticides. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed September 02, 2019).
  • ANVISA. 2018. Ministry of Health. National Health Surveillance Agency. Program for the analysis of agrochemical waste in food—Maximum residue limits. http://www.anvisa.gov.br (accessed October 12, 2018).
  • Bempelou, E. D., and K. S. Liapis. 2006. Validation of a multi-residue method for the determination of pesticide residues in apples by gas chromatography. International Journal of Environmental and Analytical Chemistry. 86 (1–2):63–68. doi:10.1080/03067310500248320.
  • Bo, L., S. Hai-Yan, and W. Ming-Hua. 2008. An enzyme-linked immunosorbent assay for the detection of bifenthrin. Chinese Journal of Analytical Chemistry 36 (1):34–38. doi:10.1016/S1872-2040(08)60013-4.
  • Caldas, S. S., F. P. Costa, and E. G. Primel. 2010. Validation of method for determination of different classes of pesticides in aqueous samples by dispersive liquid–liquid microextraction with liquid chromatography–tandem mass spectrometric detection. Analytica Chimica Acta 665 (1):55–62. doi:10.1016/j.aca.2010.03.004.
  • Campillo, N., M. J. Iniesta, P. Viñas, and M. Hernández-Cordoba. 2015. Assessment of strobilurin fungicides’ content in soya-based drinks by liquid micro-extraction and liquid chromatography with tandem mass spectrometry. Food Additives & Contaminants: Part A 12:2039–47. doi:10.1080/19440049.2015.1096966.
  • Candioti, L. V., M. M. De Zan, M. S. Camara, and H. C. Goicoechea. 2014. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–38. doi:10.1016/j.talanta.2014.01.034.
  • Cermeno, S., G. Martínez, J. Oliva, M. A. Camara, and A. Barba. 2016. Influence of the presence of ethanol on in vitro bioavailability of fungicide residues. Food and Chemical Toxicology 93:1–4. doi:10.1016/j.fct.2016.04.01.
  • Diaw, P. A., O. M. A. Mbaye, M. D. Gaye-Seye, J. J. Aaron, A. Coly, A. Tine, N. Oturan, and M. A. Oturan. 2014. Photochemically-induced fluorescence properties of two benzoyl- and phenylurea pesticides and determination in natural waters. Journal of Fluorescence 24 (4):1319–30. doi:10.1007/s10895-014-1418-8.
  • Dornellas, R. M., R. A. A. Franchini, A. R. da Silva, R. C. Matos, and R. Q. Aucélio. 2013. Determination of the fungicide kresoxim-methyl in grape juices using square-wave voltammetry and a boron-doped diamond electrode. Journal of Electroanalytical Chemistry 708:46–53. doi:10.1016/j.jelechem.2013.09.015.
  • European Commission. 2018. Regulation (EU) 2016/486, Legislation on Maximum Residue Levels. Official Journal of the European Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0486&from=EN (accessed October 16, 2018).
  • Ferreira, S. L. C., A. O. Caires, T. S. Borges, A. M. D. S. Lima, L. O. B. Silva, and W. N. L. dos Santos. 2017. Robustness evaluation in analytical methods optimized using experimental designs. Microchemical Journal 131:163–69. doi:10.1016/j.microc.2016.12.004.
  • Fróes, M. B. R., L. F. S. Santos, and S. Navickiene. 2013. Multi-residue determination of pesticides in açaí tropical fruit (Euterpe oleracea) by matrix solid-phase dispersion combined with liquid chromatography. Food Analytical Methods 6 (1):328–33. doi:10.1007/s12161-012-9444-0.
  • Garcia, J. J. A., A. L. M. C. da Cunha, A. Sá, A. P. Lamounier, W. F. Pacheco, E. C. Monteiro, and R. Q. Aucelio. 2017. Quantification of cyclofenil using high-performance liquid chromatography with fluorimetric detection and photochemical derivatization. Journal of Research Analytica 3 (1):1–8.
  • Icardo, M. C., and J. M. Calatayud. 2008. Photo-induced luminescence. Critical Reviews in Analytical Chemistry 38 (2):118–30. doi:10.1080/10408340802039609.
  • ICH Harmonised Tripartite Guideline. 2005. Validation of analytical procedures: Text and methodology Q2 (R1). https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed February 28, 2019).
  • Jiang, W., X. Chen, F. Liu, X. You, and J. Xue. 2014. Effervescence-assisted dispersive liquid–liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice. Journal of Separation Science 37 (21):3157–63. doi:10.1002/jssc.201400695.
  • Liang, P., G. Liu, F. Wang, and W. Wang. 2013. Ultrasound-assisted surfactant-enhanced emulsification microextraction with solidification of floating organic droplet followed by high performance liquid chromatography for the determination of strobilurin fungicides in fruit juice samples. Journal of Chromatography B 926:62–67. doi:10.1016/j.jchromb.2013.02.011.
  • Liang, P., F. Wang, and Q. Wan. 2013. Ionic liquid-based ultrasound-assisted emulsification microextraction coupled with high performance liquid chromatography for the determination of four fungicides in environmental water sample. Talanta 105:57–62. doi:10.1016/j.talanta.2012.11.065.
  • Malhat, F., E. Kamel, A. Saber, E. Hassan, A. Youssef, M. Almaz, A. Hassan, and A. El-Salam Fayz. 2013. Residues and dissipation of kresoxim methyl in apple under field condition. Food Chemistry 140 (1–2):371–74. doi:10.1016/j.foodchem.2013.02.050.
  • Martínez, G., A. Morales, A. Maestro, S. Cermeño, J. Oliva, and A. Barba. 2015. Determination of nine fungicides in grape and wine using QuEChERS extraction and LC/MS/MS analysis. Journal of AOAC International 6:1745–51. doi:10.5740/jaoacint.14-216.
  • Mbaye, M., M. D. G. Seye, A. Coly, A. Tine, and J. J. Aaron. 2009. Usefulness of cyclodextrin media for the determination of α-cypermethrin by photochemically induced fluorescence: Analytical applications to natural waters. Analytical and Bioanalytical Chemistry 394 (4):1089–98. doi:10.1007/s00216-009-2611-5.
  • Melo, A., S. C. Cunha, C. Mansilha, A. Aguiar, O. Pinho, and I. M. P. L. V. O. Ferreira. 2012. Monitoring pesticide residues in greenhouse tomato by combining acetonitrile-based extraction with dispersive liquid–liquid microextraction followed by gas-chromatography–mass spectrometry. Food Chemistry 135 (3):1071–77. doi:10.1016/j.foodchem.2012.05.112.
  • Novaes, C. G., M. A. Bezerra, E. G. P. da Silva, A. M. P. dos Santos, I. L. D. Romao, and J. H. S. Neto. 2016. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microchemical Journal 128:331–46. doi:10.1016/j.microc.2016.05.015.
  • Novaes, C. G., S. L. C. Ferreira, J. H. S. Neto, F. A. de Santana, L. A. Portugal, and H. C. Goicoechea. 2016. A multiple response, function for optimization of analytical strategies involving multi-elemental determination. Current Analytical Chemistry 12:94–101. doi:10.2174/1573411011666150722220335.
  • Oliva, J., G. Martínez, S. Cermeño, M. Motas, A. Barba, and M. A. Cámara. 2018. Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine. European Food Research and Technology 244 (6):1083–90. doi:10.1007/s00217-017-3031-y.
  • Rezaee, M., Y. Assadi, M.-R. Milani Hosseini, E. Aghaee, F. Ahmadi, and S. Berijani. 2006. Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A 1116 (1–2):1–9. doi:10.1016/j.chroma.2006.03.007.
  • Rezaee, M., Y. Yamini, and M. Faraji. 2010. Evolution of dispersive liquid-liquid microextraction method. Journal of Chromatography A 1217 (16):2342–57. doi:10.1016/j.chroma.2009.11.088.
  • Sanino, A., L. Bolzoni, and M. Bandini. 2004. Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables. Journal of Chromatography A 1036:161–69. doi:10.1016/j.chroma.2004.02.078.
  • SINITOX/ICICT/FIOCRUZ – National Toxic-Pharmacological Information System. 2015. Cases of intoxication and poisoning: Annual statistics. http://sinitox.icict.fiocruz.br/ (accessed October 09, 2018).
  • Siqueira, S. L., and M. H. L. Kruse. 2008. Agrochemicals and human health: Contributions of healthcare professionals. Revista da Escola de Enfermagem da USP 42:573–79. doi:10.1590/S0080-62342008000300024.
  • Thiaré, D. D., A. Coly, D. Sarr, A. Khonté, A. Diop, M. D. Gaye-Seye, F. Delattre, A. Tine, and J. J. Aaron. 2015. Determination of the fenvalerate insecticide in natural waters by a photochemically-induced fluorescence method. Macedonian Journal of Chemistry and Chemical Engineering 34 (2):245–54. doi:10.20450/mjcce.2015.726.
  • Vincelli, P. 2012. QoI (strobilurin) fungicides: Benefits and risks, 2002. https://www.apsnet.org/edcenter/advanced/topics/Pages/StrobilurinFungicides.aspx (accessed October 09, 2018). doi:10.1094/PHI-I-2002-0809-02.
  • Viñas, P., N. Campillo, N. Martínez-Castillo, and M. Hernández-Córdoba. 2009. Method development and validation for strobilurin fungicides in baby foods by solid-phase microextraction gas chromatography-mass spectrometry. Journal of Chromatography A 1216 (1):140–46. doi:10.1016/j.chroma.2008.11.036.
  • Viñas, P., N. Martínez-Castillo, N. Campillo, and M. Hernández-Córdoba. 2010. Liquid-liquid microextraction methods based on ultrasound-assisted emulsification and single-drop coupled to gas chromatography-mass spectrometry for determining strobilurin and oxazole fungicides in juices and fruits. Journal of Chromatography A 1217 (42):6569–77. doi:10.1016/j.chroma.2010.08.046.
  • Wang, K., G. Chen, X. Wu, J. Shi, and D. Guo. 2014. Determination of strobilurin fungicide residues in fruits and vegetables by micellar electrokinetic capillary chromatography with sweeping. Journal of Chromatographic Science 52 (2):157–63. doi:10.1093/chromsci/bmt001.
  • Wang, S., L. Ren, Y. Xu, and F. Liu. 2011. Application of ultrasound-assisted ionic liquid dispersive liquid-phase microextraction followed high-performance liquid chromatography for the determination of fungicides in red wine. Microchimica Acta 173 (3–4):453–57. doi:10.1007/s00604-011-0577-4.
  • Xue, J., X. Chen, W. Jiang, F. Liu, and H. Li. 2015. Rapid and sensitive analysis of nine fungicide residues in chrysanthemum by matrix extraction-vortex-assisted dispersive liquid–liquid microextraction. Journal of Chromatography B 975:9–17. doi:10.1016/j.jchromb.2014.10.029.
  • Xue, J., H. Li, F. Liu, W. Jiang, and X. Chen. 2014. Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquid − liquid microextraction coupled with gas chromatography. Journal of Separation Science 37 (7):845–52. doi:10.1002/jssc.201301223.
  • You, X., W. Jiang, F. Liu, and C. Liu. 2013. QuEChERS in combination with ultrasound-assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet method for the simultaneous analysis of six fungicides in grape. Food Analytical Methods 6 (6):1515–21. doi:10.1007/s12161-012-9546-8.
  • Zhu, J., X. J. Dai, J. J. Fang, and H. M. Zhu. 2013. Simultaneous detection and degradation patterns of kresoxim-methyl and trifloxystrobin residues in citrus fruits by HPLC combined with QuEChERS. Journal of Environmental Science and Health Part B 48 (6):470–76. doi:10.1080/03601234.2013.761877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.