322
Views
7
CrossRef citations to date
0
Altmetric
X-Ray Spectroscopy

Improved Accuracy of Multicomponent Samples Analysis by X-Ray Fluorescence Using Relative Intensities and Scattered Radiation: A Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2685-2699 | Received 15 Dec 2019, Accepted 01 Apr 2020, Published online: 14 Apr 2020

References

  • Bakhtiyarov, A. V. 2010. X-ray fluorescent analysis using scattered radiation. Inorganic Materials 46 (15):1618–26. doi:10.1134/S0020168510150045.
  • Beckhoff, B., B. Kanngießer, N. Langhoff, R. Wedell, and H. Wolff, eds. 2006. Handbook of practical X-ray fluorescence analysis. Berlin/Heidelberg: Springer-Verlag.
  • Bui, C., M. Milazzo, and M. Monichino. 1987. Use of low-energy gamma ray scattering and X-ray fluorescence in quantitative analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 28 (1):88–92. doi:10.1016/0168-583X(87)90041-3.
  • Campbell, J. L., G. M. Perrett, J. A. Maxwell, E. Nield, R. Gellert, P. L. King, M. Lee, J. M. O’Meara, and I. Pradler. 2013. Refinement of the Compton-Rayleigh scatter ratio method for use on the Mars science laboratory alpha particle X-ray spectrometer. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 302:24–31. doi:10.1016/j.nimb.2013.03.006.
  • Cesareo, R., J. T. de Assis, C. Roldán, A. D. Bustamante, A. Brunetti, and N. Schiavon. 2013. Multilayered samples reconstructed by measuring Kα/Kβ or Lα/Lβ X-ray intensity ratios by EDXRF. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 312:15–22. doi:10.1016/j.nimb.2013.06.019.
  • Criss, J. W., and L. S. Birks. 1968. Calculation methods for fluorescent X-ray spectrometry: Empirical coefficients vs. fundamental parameters. Analytical Chemistry 40 (7):1080–6. doi:10.1021/ac60263a023.
  • Dao, T. H. 2016. Instantaneous accounting for leaf water in X-ray fluorescence spectra of corn grown in manure- and fertilizer-amended soils. Computers and Electronics in Agriculture 129:84–90. doi:10.1016/j.compag.2016.09.012.
  • De Boer, D. K. G. 1991. X-ray standing waves and the critical sample thickness for total-reflection X-ray fluorescence analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 46 (10):1433–6. doi:10.1016/0584-8547(91)80194-8.
  • De Jongh, W. K. 1979. The atomic number Z = O: Loss and gain on ignition in XRF analysis treated by the JN-equations. X-Ray Spectrometry 8 (2):52–6. doi:10.1002/xrs.1300080203.
  • Figueroa, R. G., I. R. Chávez, and E. Bonzi. 2014. In vivo EDXRF scanning analysis of human nail. X-Ray Spectrometry 43 (6):338–44. doi:10.1002/xrs.2560.
  • Flude, S., M. Haschke, and M. Storey. 2017. Application of benchtop micro-XRF to geological materials. Mineralogical Magazine 81 (4):923–48. doi:10.1180/minmag.2016.080.150.
  • Garmai, A. V., and K. V. Oskolok. 2018. Development of the method of calibration equations for the X-ray fluorescence analysis of multicomponent samples in the presence of undetectable elements. Journal of Analytical Chemistry 73 (7):631–40. doi:10.1134/S1061934818070055.
  • Garmay, A. V., and K. V. Oskolok. 2017. Improving accuracy and capabilities of X-ray fluorescence method using intensity ratios. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 397:67–74. doi:10.1016/j.nimb.2017.02.072.
  • Garmay, A. V., K. V. Oskolok, and O. V. Monogarova. 2017. The use of the ratios of intensities of spectral lines for X-ray fluorescence analysis of metal alloys and oxide materials. Moscow University Chemistry Bulletin 72 (1):49–55. doi:10.3103/S0027131417010059.
  • Garmay, A. V., K. V. Oskolok, O. V. Monogarova, and N. V. Alov. 2019. Total reflection X-ray fluorescence analysis of highly mineralized water samples using relative intensities and scattered radiation. Spectrochimica Acta Part B: Atomic Spectroscopy 152:74–83. doi:10.1016/j.sab.2018.12.011.
  • Gigante, G. E., L. J. Pedraza, and S. Sciuti. 1985. Analysis of metal alloys by Rayleigh to Compton ratios and X-ray fluorescence peaks in the 50 to 122 keV energy range. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 12 (2):229–34. doi:10.1016/0168-583X(85)90056-4.
  • He, F., and P. J. Van Espen. 1991. General approach for quantitative energy dispersive X-ray fluorescence analysis based on fundamental parameters. Analytical Chemistry 63 (20):2237–44. doi:10.1021/ac00020a009.
  • Il’in, N. P. 2011. An alternative version of X-ray fluorescence analysis. Journal of Analytical Chemistry 66 (10):894–917. doi:10.1134/S1061934811100054.
  • Klockenkämper, R., and A. von Bohlen. 1996. Elemental analysis of environmental samples by total reflection X-ray fluorescence: A review. X-Ray Spectrometry 25 (4):156–62.. (SICI)1097-4539(199607)25:4 < 156::AID-XRS154 > 3.0.CO;2-3. doi:10.1002/(SICI)1097-4539(199607)25:4<156::AID-XRS154>3.0.CO;2-3.
  • Li, F., Z. Liu, T. Sun, C. Yang, X. Sun, W. Sun, J. He, and X. Ding. 2015. A confocal three-dimensional micro X-ray scattering technology based on Rayleigh to Compton ratio for identifying materials with similar density and different weight percentages of low-Z elements. Radiation Physics and Chemistry 112:163–8. doi:10.1016/j.radphyschem.2015.03.042.
  • Li, Y., X. Zhang, Y. Wang, X. Sun, Z. Liu, and T. Sun. 2019. Quantitative analysis of the elemental composition of ion liquid with confocal X-ray fluorescence based on peak to background ratio. Radiation Physics and Chemistry 162:168–71. doi:10.1016/j.radphyschem.2019.05.005.
  • Maltsev, A. S., A. V. Ivanov, V. M. Chubarov, G. V. Pashkova, S. V. Panteeva, and L. Z. Reznitskii. 2020. Development and validation of a method for multielement analysis of apatite by total-reflection X-ray fluorescence spectrometry. Talanta 214:120870. doi:10.1016/j.talanta.2020.120870.
  • Marcowicz, A. 2011. An overview of quantification methods in energy-dispersive X-ray fluorescence analysis. Pramana – Journal of Physics 76 (2):321–9. doi:10.1007/s12043-011-0045-z.
  • Mikhailov, I. F., A. A. Baturin, A. I. Mikhailov, S. S. Borisova, and L. P. Fomina. 2018. Determination of coal ash content by the combined X.-ray fluorescence and scattering spectrum. Review of Scientific Instruments 89 (2):023103. doi:10.1063/1.4993101.
  • O'Neil, L. P., D. C. Catling, and W. T. Elam. 2018. Optimized Compton fitting and modeling for light element determination in micro-X-ray fluorescence map datasets. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 436:173–8. doi:10.1016/j.nimb.2018.09.023.
  • Oskolok, K. V., A. V. Garmay, and O. V. Monogarova. 2014. Quantitative X-ray fluorescence analysis of multielemental subjects of complex shape without implementation of reference standards. Moscow University Chemistry Bulletin 69 (1):8–11. doi:10.3103/S0027131414010076.
  • Perrett, G. M., J. L. Campbell, R. Gellert, P. L. King, E. Nield, J. M. O’Meara, and I. Pradler. 2016. Refinement of the Compton-Rayleigh scatter ratio method for use on the Mars science laboratory alpha particle X-ray spectrometer: II – extraction of invisible element content. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 368:129–37. doi:10.1016/j.nimb.2015.10.076.
  • Rousseau, R. 2013. how to apply the fundamental parameters method to the quantitative X-ray fluorescence analysis of geological materials. Journal of Geosciences and Geomatics 1 (1):1–7.
  • Rousseau, R. M. 2006. Corrections for Matrix Effects in X-ray fluorescence analysis – a tutorial. Spectrochimica Acta Part B: Atomic Spectroscopy 61 (7):759–77. doi:10.1016/j.sab.2006.06.014.
  • Rousseau, R. M. 2009. The quest for a fundamental algorithm in X-ray fluorescence analysis and calibration. The Open Spectroscopy Journal 3 (1):31–42. doi:10.2174/1874383800903010031.
  • Sherman, J. 1955. The theoretical derivation of fluorescent X-ray intensities from mixtures. Spectrochimica Acta 7:283–306. doi:10.1016/0371-1951(55)80041-0.
  • Silva, C. D., G. P. Santana, and S. P. A. Paz. 2020. Determination of La, Ce, Nd, Sm, and Gd in mineral waste from cassiterite beneficiation by wavelength-dispersive X-ray fluorescence spectrometry. Talanta 206:120254. doi:10.1016/j.talanta.2019.120254.
  • Sitko, R. 2006. Correction of matrix effects via scattered radiation in X-ray fluorescence analysis of samples collected on membrane filters. Journal of Analytical Atomic Spectrometry 21 (10):1062–7. doi:10.1039/b604955a.
  • Sitko, R., and B. Zawisza. 2012. Quantification in X-ray fluorescence spectrometry. In X-Ray Spectroscopy, ed. Sh. K. Sharma, 137–62. Rijeka: InTech. doi:10.5772/29367.
  • Smith, K. A., and M. S. Cresser, eds. 2004. Soil analysis: Modern instrumental techniques. 3rd ed. New York: Marcel Dekker.
  • Studinski, R., J. O'Meara, and F. McNeill. 2008. The feasibility of in vivo measurement of arsenic and silver by x-ray fluorescence. X-Ray Spectrometry 37 (1):51–7. doi:10.1002/xrs.1010.
  • Szalóki, I. 1991. Some applications of the fundamental parameter method in energy‐dispersive X‐ray fluorescence analysis by isotope excitation. X-Ray Spectrometry 20 (6):297–303. doi:10.1002/xrs.1300200610.
  • Szalóki, I., G. Radócz, and A. Gerényi. 2019. Fundamental parameter model for quantification of total reflection X-ray fluorescence analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 156:33–41. doi:10.1016/j.sab.2019.04.010.
  • Szalóki, I., A. Somogyi, M. Braun, and A. Toth. 1999. Investigation of geochemical composition of lake sediments using ED-XRF and ICP-AES techniques. X. X-Ray Spectrometry 28 (5):399–405. ‐. (SICI)1097-4539(199909/10)28:5 < 399::AID-XRS375 > 3.0.CO;2-E. doi:10.1002/(SICI)1097-4539(199909/10)28:5<399::AID-XRS375>3.0.CO;2-E.
  • Van Grieken, R., and A. A. Markowicz, eds. 2001. Handbook of X-ray spectrometry. 2nd ed. New York: Marcel Dekker.
  • Van Gysel, M., P. Lemberge, and P. Van Espen. 2003. Description of Compton peaks in energy-dispersive X-ray fluorescence spectra. X-Ray Spectrometry 32 (2):139–47. doi:10.1002/xrs.628.
  • Vázquez, C. 2004. The capabilities of total reflection X-ray fluorescence in the polymeric analytical field. Spectrochimica Acta Part B: Atomic Spectroscopy 59 (8):1215–9. doi:10.1016/j.sab.2004.04.010.
  • Wegrzynek, D., A. Markowicz, and E. Chinea-Cano. 2003. Application of the backscatter fundamental parameter method for in situ element determination using a portable energy-dispersive X-ray fluorescence spectrometer. X-Ray Spectrometry 32 (2):119–28. doi:10.1002/xrs.626.
  • Zhang, Q., Y. Guo, H. Bai, Y. Gu, Y. Xu, J. Zhao, L. Ge, Y. Peng, and J. Liu. 2018. Determination of effective atomic numbers and mass attenuation coefficients of samples using in‐situ energy‐dispersive X‐ray fluorescence analysis. X-Ray Spectrometry 47 (1):4–10. doi:10.1002/xrs.2799.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.