189
Views
20
CrossRef citations to date
0
Altmetric
Sensors

Oxidized Carbon Nanohorn-Hydrophilic Polymer Nanocomposite as the Resistive Sensing Layer for Relative Humidity

, , , , , , , & show all
Pages 527-540 | Received 20 Jan 2020, Accepted 19 May 2020, Published online: 12 Jun 2020

References

  • Allied Market Research. 2020. Humidity Sensor Market. Accessed 3 January https://www.alliedmarketresearch.com/humidity-sensor-market.
  • Bi, H., K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, and M. S. Dresselhaus. 2013. Ultrahigh humidity sensitivity of graphene oxide. Scientific Reports 3:2714. doi:10.1038/srep02714.
  • Borini, S., R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen. 2013. Ultrafast graphene oxide humidity sensors. ACS Nano 7 (12):11166–73. doi:10.1021/nn404889b.
  • Bracamonte, M. V., M. Melchionna, A. Giuliani, L. Nasi, C. Tavagnacco, M. Prato, and P. Fornasiero. 2017. H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: The CeO2 case. Sensors and Actuators B: Chemical 239:923–32. doi:10.1016/j.snb.2016.08.112.
  • Chen, M. C., C. L. Hsu, and T. J. Hsueh. 2014. Fabrication of humidity sensor based on bilayer graphene. IEEE Electron Device Letters 35 (5):590–2. doi:10.1109/LED.2014.2310741.
  • Chen, Z., and C. Lu. 2005. Humidity sensors: A review of materials and mechanisms. Sensor Letters 3 (4):274–95. doi:10.1166/sl.2005.045.
  • Cobianu, C., A. Stratulat, B. Serban, C. Bostan, O. Buiu, and M. Brezeanu. 2014. Humidity sensing system, WIPO/PCT, WO 2016/102028 A1, filed December 24, 2014, and issued June 30, 2016.
  • Cobianu, C., B. Serban, and M. Brezeanu. 2010. Differential resonant sensor apparatus and method for detecting relative humidity, United States Granted Patent US 8479560 B2, filed September 30 and issued July 9, 2013.
  • Cobianu, C., B. Serban, C. Bostan, S. Costea, O. Buiu, A. Stratulat, and M. Brezeanu. 2015. A humidity sensor, European Granted Patent, EP 3043173 B1, filed January 9, 2015, and issued July 13, 2017.
  • Dumitru, V., V. Avramescu, O. Buiu, M. Brezeanu, and B. Serban. 2017. Humidity sensors with transistor structures and piezoelectric layer, United States Granted Patent US 10324053 B2, filed March 10, 2017, and issued June 18, 2019.
  • Farahani, H., R. Wagiran, and M. Hamidon. 2014. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors (Basel, Switzerland) 14 (5):7881–939. doi:10.3390/s140507881.
  • Fei, T., K. Jiang, F. Jiang, R. Mu, and T. Zhang. 2014. Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. Journal of Applied Polymer Science 131 (1):n/a–39607. doi:10.1002/app.39726.
  • Frost and Sullivan, Global Humidity and Moisture Sensors Market. 2020. Forecast to 2023. Accessed 5 January https://store.frost.com/global-humidity-and-moisture-sensors-market-forecast-to-2023.html#section1.
  • Han, J. W., B. Kim, J. Li, and M. Meyyappan. 2012. Carbon nanotube-based humidity sensor on cellulose paper. The Journal of Physical Chemistry C 116 (41):22094–7. doi:10.1021/jp3080223.
  • Iijima, S., M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi. 1999. Nano-aggregates of single-walled graphitic carbon nano-horns. Chemical Physics Letters 309 (3–4):165–70. doi:10.1016/S0009-2614(99)00642-9.
  • Izadi-Najafabadi, A., T. Yamada, D. N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, and K. Hata. 2011. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite. ACS Nano 5 (2):811–9. doi:10.1021/nn1017457.
  • Kamekichi, S., and T. Tatsumi. 1965. Wet and dry plate dew point hygrometer in humidity and moisture, Humidity and Moisture: Measurement and Control in Science and Industry. Volume One. Principles and Methods of Measuring Humidity in Gases, International Symposium in Washington, DC. New York: Reinhold Publishing: 64–69.
  • Karousis, N., I. Suarez-Martinez, C. P. Ewels, and N. Tagmatarchis. 2016. Structure, properties, functionalization, and applications of carbon nanohorns. Chemical Reviews 116 (8):4850–83. doi:10.1021/acs.chemrev.5b00611.
  • Kim, J. S., and P. J. Reucroft. 1988. Solid state water vapor sensor for robotics applications. Proceedings of the 1988 IEEE Inter. Conf. on Robotics and Automation 2: 1302–1303.
  • Kuang, Q., C. Lao, Z. L. Wang, Z. Xie, and L. Zheng. 2007. High-sensitivity humidity sensor based on a single SnO(2) nanowire. Journal of the American Chemical Society 129 (19):6070–1. doi:10.1021/ja070788m.
  • Lee, C. W., and M. S. Gong. 2003. Resistive humidity sensor using phosphonium salt-containing polyelectrolytes based on the mutually cross-linkable copolymers. Macromolecular Research 11 (5):322–7. doi:10.1007/BF03218371.
  • Lee, C. Y., and G. B. Lee. 2005. Humidity sensors: A review. Sensor Letters 3(1):1–15. doi:10.1166/sl.2005.001.
  • Li, W., F. Xu, L. Sun, W. Liu, and Y. Qiu. 2016. A novel flexible humidity switch material based on multi-walled carbon nanotube/polyvinyl alcohol composite yarn. Sensors and Actuators B: Chemical 230:528–35. doi:10.1016/j.snb.2016.02.108.
  • Liu, X., L. Shi, W. Niu, H. Li, and G. Xu. 2008. Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosensors & Bioelectronics 23 (12):1887–90. doi:10.1016/j.bios.2008.02.016.
  • Lv, X., Y. Li, L. Hong, D. Luo, and M. Yang. 2007. A highly water-resistive humidity sensor based on silicon-containing polyelectrolytes prepared by one-pot method. Sensors and Actuators B: Chemical 124 (2):347–51. doi:10.1016/j.snb.2006.12.048.
  • Mamatha Kumari, M., M. Jagannatham, A. Joseph Berkmans, P. Haridoss, N. Lakshmana Reddy, and M. V. Shankar. 2019. Influence of pre-oxidation, versus post-oxidation of carbon nanohorns in TiO2 nanohybrid for enhanced photocatalytic hydrogen production. Materials Research Bulletin 109:34–40. doi:10.1016/j.materresbull.2018.09.010.
  • Nahar, R. K., and V. K. Khanna. 1998. Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor. Sensors and Actuators B: Chemical 46 (1):35–41. doi:10.1016/S0925-4005(97)00323-7.
  • Radeva, E., V. Georgiev, L. Spassov, N. Koprinarov, and S. Kanev. 1997. Humidity adsorptive properties of thin fullerene layers studied by means of quartz micro-balance. Sensors and Actuators B: Chemical 42 (1):11–3. doi:10.1016/S0925-4005(97)80306-1.
  • Rittersma, Z. M. 2002. Recent achievements in miniaturized humidity sensors—a review of transduction techniques. Sensors and Actuators A: Physical 96 (2–3):196–210. doi:10.1016/S0924-4247(01)00788-9.
  • Saito, R., M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus. 2011. Raman spectroscopy of graphene and carbon Nanotubes. Advances in Physics 60 (3):413–550. doi:10.1080/00018732.2011.582251.
  • Sano, N., M. Kinugasa, F. Otsuki, and J. Suehiro. 2007. Gas sensor using single-wall carbon nanohorns. Advanced Powder Technology 18 (4):455–66. doi:10.1163/156855207781389447.
  • Santra, S., G. Hu, R. C. T. Howe, A. De Luca, S. Z. Ali, F. Udrea, and T. Hasan. 2015. CMOS integration of inkjet-printed graphene for humidity sensing. Scientific Reports 5 (17374):1–11.
  • Serban, B. C., C. Cobianu, N. Dumbravescu, O. Buiu, M. Bumbac, and C. M. Nicolescu. 2019. Oxidized carbon nanohorns as novel sensing layer for chemiresistive humidity sensor. 9th International Conference of the Chemical Societies of the South-Eastern European Countries on “Chemistry a Nature Challenger, Targoviste, Romania, S-1 P-20.
  • Serban, B. C., O. Buiu, N. Dumbravescu, C. Cobianu, V. Avramescu, M. Brezeanu, M. Bumbac, and C. M. Nicolescu. 2020. Oxidized Carbon Nanohorns as Novel Sensing Layer for Resistive Humidity Sensor. Acta Chimica Slovenica 67:1–7.
  • Serban, B., C. Cobianu, M. Brezeanu, O. Buiu, C. Bostan, and A. Stratulat. 2015a. Relative humidity sensor and method, European Granted Patent EP 3078964 B1, filed April 9, 2015, and issued October 12, 2016.
  • Serban, B., M. Brezeanu, O. Buiu, and C. Cobianu. 2016. Relative humidity sensor and method, European Granted Patent EP 3211408 B1, filed February 2, 2016, and issued August 30, 2017.
  • Serban, B., O. Buiu, O. Ionescu, and A. Buiu. 2017a. Chemiresistor humidity sensor and fabrication method thereof. WO/2019/087112 A1, filed October 31, 2017, and issued May 9, 2019.
  • Serban, B., V. Avramescu, M. Brezeanu, R. Gavrila, A. Dinescu, O. Buiu, C. Cobianu, S. Beck, and B. Moffat. 2017b. Talc-Impregnated Polyimide for Humidity Sensors with Improved Hysteresis. IEEE CAS Conference, Sinaia, Romania, 109–112.
  • Serban, B., V. Dumitru, O. Buiu, and M. Brezeanu. 2015b. Relative humidity sensor and method of forming, European Granted, European Patent 3150999 A1, filed October 1, 2015, and issued April 5, 2017.
  • Tulliani, J. M., B. Inserra, and D. Ziegler. 2019. Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines 10 (4):232. doi:10.3390/mi10040232.
  • Vizuete, M., M. J. Gómez‐Escalonilla, J. L. G. Fierro, A. S. D. Sandanayaka, T. Hasobe, M. Yudasaka, S. Iijima, O. Ito, and F. Langa. 2010. A Carbon Nanohorn-Porphyrin Supramolecular Assembly for Photoinduced Electron-Transfer Processes. Chemistry - A European Journal 16 (35):10752–63. doi:10.1002/chem.201000299.
  • Yao, Y., X. Chen, W. Ma, and W. Ling. 2014. Quartz crystal microbalance humidity sensors based on nanodiamond sensing films. IEEE Transactions on Nanotechnology 13 (2):386–93. doi:10.1109/TNANO.2014.2305986.
  • Zhang, D., J. Tong, and B. Xia. 2014. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sensors and Actuators B: Chemical 197:66–72. doi:10.1016/j.snb.2014.02.078.
  • Zhang, J., J. Lei, C. Xu, L. Ding, and H. Ju. 2010. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Analytical Chemistry 82 (3):1117–22. doi:10.1021/ac902914r.
  • Zhang, X., H. Ming, R. Liu, X. Han, Z. Kang, Y. Liu, and Y. Zhang. 2013. Highly sensitive humidity sensing properties of carbon quantum dots films. Materials Research Bulletin 48 (2):790–4. doi:10.1016/j.materresbull.2012.11.056.
  • Zhao, Y., J. Li, Y. Ding, and L. Guan. 2011. Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chemical Communications (Cambridge, England) 47 (26):7416–8. doi:10.1039/c1cc12171e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.