411
Views
5
CrossRef citations to date
0
Altmetric
Electrochemistry

Differential Pulse Voltammetric (DPV) Determination of Phosphomolybdenum Complexes by a Poly(Vinyl Chloride) Coated Molybdenum Blue Modified Pencil Graphite Electrode (PVC-MB-PGE)

, , &
Pages 492-511 | Received 07 Apr 2020, Accepted 19 May 2020, Published online: 05 Jun 2020

References

  • Al Rawashdeh, R., and P. Maxwell. 2011. The evolution and prospects of the phosphate industry. Mineral Economics 24 (1):15–27. doi:10.1007/s13563-011-0003-8.
  • Arvas, M. B., O. Gorduk, M. Gencten, and Y. Sahin. 2019. Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly(vinyl chloride) coated pencil graphite electrode. Analytical Methods 11 (30):3874–81. doi:10.1039/C9AY01275C.
  • Arvas, M. B., H. Gürsu, M. Gençten, and Y. Sahin. 2018. Electrochemical formation of molybdenum phosphate on a pencil graphite electrode and its potential application for the detection of phosphate ions. Analytical Methods 10 (35):4282–91. doi:10.1039/C8AY01653D.
  • Berchmans, S., T. B. Issa, and P. Singh. 2012. Determination of inorganic phosphate by electroanalytical methods: A review. Analytica Chimica Acta 729:7–20. doi:10.1016/j.aca.2012.03.060.
  • Cannon, P. 1960. Some electrometric measurements of heteropoly ion formation in aqueous systems. Journal of Inorganic and Nuclear Chemistry 13 (3–4):261–8. doi:10.1016/0022-1902(60)80304-1.
  • Cinti, S., D. Talarico, G. Palleschi, D. Moscone, and F. Arduini. 2016. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Analytica Chimica Acta 919:78–84. doi:10.1016/j.aca.2016.03.011.
  • Correll, D. L. 1998. The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality 27 (2):261–6. doi:10.2134/jeq1998.00472425002700020004x.
  • Da Silva, M. J., and M. G. Teixeira. 2017. An unexpected behavior of H3PMo12O40 heteropolyacid catalyst on the biphasic hydrolysis of vegetable oils. RSC Advances 7 (14):8192–9. doi:10.1039/C6RA27287H.
  • Galhardo, C. X., and J. C. Masini. 2000. Spectrophotometric determination of phosphate and silicate by sequential injection using molybdenum blue chemistry. Analytica Chimica Acta 417 (2):191–200. doi:10.1016/S0003-2670(00)00933-8.
  • Gorduk, O. 2020. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube–over-oxidized poly (3, 4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters 53 (7):1034–52. doi:10.1080/00032719.2019.1693583.
  • Hanrahan, G., T. M. Salmassi, C. S. Khachikian, and K. L. Foster. 2005. Reduced inorganic phosphorus in the natural environment: Significance, speciation and determination. Talanta 66 (2):435–44. doi:10.1016/j.talanta.2004.10.004.
  • Himeno, S., M. Hashimoto, and T. Ueda. 1999. Formation and conversion of molybdophosphate and -arsenate complexes in aqueous solution. Inorganica Chimica Acta 284 (2):237–45. doi:10.1016/S0020-1693(98)00294-1.
  • Huang, X. L., and J. Z. Zhang. 2009. Neutral persulfate digestion at sub-boiling temperature in an oven for total dissolved phosphorus determination in natural waters. Talanta 78 (3):1129–35. doi:10.1016/j.talanta.2009.01.029.
  • Ian Buckley, R., and R. J. H. Clark. 1985. Structural and electronic properties of some polymolybdates reducible to molybdenum blues. Coordination Chemistry Reviews 65:167–218. doi:10.1016/0010-8545(85)85025-6.
  • Johansson, G., L. Pettersson, N. Nigri, A. Kjekshus, B. Klewe, and D. L. Powell. 1974. A large-angle X-ray scattering study of aqueous pentamolybdodiphosphate and heptamolybdate solutions. Acta Chemica Scandinavica 28:1119–28. doi:10.3891/acta.chem.scand.28a-1119.
  • Jońca, J., V. León Fernández, D. Thouron, A. Paulmier, M. Graco, and V. Garçon. 2011. Phosphate determination in seawater: Toward an autonomous electrochemical method. Talanta 87 (1):161–7. doi:10.1016/j.talanta.2011.09.056.
  • Kolliopoulos, A. V., D. K. Kampouris, and C. E. Banks. 2015. Rapid and portable electrochemical quantification of phosphorus. Analytical Chemistry 87 (8):4269–74. doi:10.1021/ac504602a.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2017a. Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synthetic Metals 233:111–18. doi:10.1016/j.synthmet.2017.09.009.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2018a. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russian Journal of Electrochemistry 54 (11):796–808. doi:10.1134/S1023193518110046.
  • Koyun, O., H. Gursu, S. Gorduk, and Y. Sahin. 2017b. Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode. International Journal of Electrochemical Science 12:6428–44. doi:10.20964/2017.07.41.
  • Koyun, O., S. Gorduk, M. Gencten, and Y. Sahin. 2018b. A novel copper(II). Phthalocyanine modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New Journal of Chemistry 43 (1):85–92. doi:10.1039/C8NJ03721C.
  • Kwan, R. C. H., H. F. Leung, P. Y. T. Hon, J. P. Barford, and R. Renneberg. 2005. A screen-printed biosensor using pyruvate oxidase for rapid determination of phosphate in synthetic wastewater. Applied Microbiology and Biotechnology 66 (4):377–83. doi:10.1007/s00253-004-1701-8.
  • Lawal, A. T., and S. B. Adeloju. 2013a. Progress and recent advances in phosphate sensors: A review. Talanta 114:191–203. doi:10.1016/j.talanta.2013.03.031.
  • Lawal, A. T., and S. B. Adeloju. 2013b. Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study. Biosensors & Bioelectronics 40 (1):377–84. doi:10.1016/j.bios.2012.08.012.
  • Mahadevaiah, N., B. Venkataramani, and B. S. Jai Prakash. 2007. Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite - A breakthrough curve study. Chemistry of Materials 19 (18):4606–12. doi:10.1021/cm071028d.
  • Maksimovskaya, R. I. 2013. Molybdophosphate heteropoly blues: Electron-transfer reactions in aqueous solutions as studied by NMR. Polyhedron 65:54–9. doi:10.1016/j.poly.2013.08.014.
  • Mulkerrins, D., A. D. W. Dobson, and E. Colleran. 2004. Parameters affecting biological phosphate removal from wastewaters. Environment International 30 (2):249–59. doi:10.1016/S0160-4120(03)00177-6.
  • Murata, K., and S. Ikeda. 1983. Studies on yellow and colourless molybdophosphate complexes in the aqueous solution by laser Raman spectroscopy. Polyhedron 2 (10):1005–8. doi:10.1016/S0277-5387(00)81445-X.
  • Murata, K., and T. Kiba. 1970. Studies on the formation and the extraction of molybdophosphoric acid. Journal of Inorganic and Nuclear Chemistry 32 (5):1667–78. doi:10.1016/0022-1902(70)80657-1.
  • Nagul, E. A., I. D. McKelvie, P. Worsfold, and S. D. Kolev. 2015. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Analytica Chimica Acta 890:60–82. doi:10.1016/j.aca.2015.07.030.
  • Olsen, S. R., C. V. Cole, F. Watandbe, and L. Dean. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. United States Department Of Agriculture, Washington.
  • Özcan, L., M. Sahin, and Y. Sahin. 2008. Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid. Sensors (Basel, Switzerland) 8 (9):5792–805. doi:10.3390/s8095792.
  • Pettersson, L., I. Andersson, and L. O. Oehman. 1986. Multicomponent polyanions. 39. Speciation in the aqueous H+-MoO42- -HPO42- system as deduced from a combined Emf-31P NMR study. Inorganic Chemistry 25 (26):4726–33. doi:10.1021/ic00246a028.
  • Quintana, J. C., L. Idrissi, G. Palleschi, P. Albertano, A. Amine, M. E. Rhazi, and D. Moscone. 2004. Investigation of amperometric detection of phosphate application in seawater and cyanobacterial biofilm samples. Talanta 63 (3):567–74. doi:10.1016/j.talanta.2003.11.040.
  • Rahman, M. A., D. S. Park, S. C. Chang, C. J. McNeil, and Y. B. Shim. 2006. The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations. Biosensors & Bioelectronics 21 (7):1116–24. doi:10.1016/j.bios.2005.04.008.
  • Ruiz-Calero, V., and M. T. Galceran. 2005. Ion chromatographic separations of phosphorus species: A review. Talanta 66 (2):376–410. doi:10.1016/j.talanta.2005.01.027.
  • Shyla, B., Mahadevaiah, and G. Nagendrappa. 2011. A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 78 (1):497–502. doi:10.1016/j.saa.2010.11.017.
  • Sjösten, A., and S. Blomqvist. 1997. Influence of phosphate concentration and reaction temperature when using the molybdenum blue method for determination of phosphate in water. Water Research 31 (7):1818–23. https://doi.org/10.1016/S0043-1354(96).00367-3. doi:10.1016/S0043-1354(96)00367-3.
  • Smil, V. 2000. Phosphorus in the environment : Natural flows and human interferences. Annual Review of Energy and the Environment 25 (1):53–88. doi:10.1146/annurev.energy.25.1.53.
  • Takahashi, M., Y. Abe, and M. Tanaka. 2015. Elucidation of molybdosilicate complexes in the molybdate yellow method by ESI-MS. Talanta 131:301–8. doi:10.1016/j.talanta.2014.07.079.
  • Talarico, D., F. Arduini, A. Amine, D. Moscone, and G. Palleschi. 2015. Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex. Talanta 141:267–72. doi:10.1016/j.talanta.2015.04.006.
  • Villalba, M. M., K. J. McKeegan, D. H. Vaughan, M. F. Cardosi, and J. Davis. 2009. Bioelectroanalytical determination of phosphate: A review. Journal of Molecular Catalysis B: Enzymatic 59 (1–3):1–8. doi:10.1016/j.molcatb.2008.12.011.
  • Warwick, C., A. Guerreiro, and A. Soares. 2013. Sensing and analysis of soluble phosphates in environmental samples: A review. Biosensors & Bioelectronics 41:1–11. doi:10.1016/j.bios.2012.07.012.
  • Worsfold, P. J., J. R. Clinch, and H. Casey. 1987. Spectrophotometric field monitor for water quality parameters. The determination of phosphate. Analytica Chimica Acta 197 (C):43–50. https://doi.org/10.1016/S0003-2670(00).84711-X. doi:10.1016/S0003-2670(00)84711-X.
  • Worsfold, P., I. McKelvie, and P. Monbet. 2016. Determination of phosphorus in natural waters: A historical review. Analytica Chimica Acta 918:8–20. doi:10.1016/j.aca.2016.02.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.