357
Views
3
CrossRef citations to date
0
Altmetric
Separations

Removal of Heavy Metals by a Membrane Bioreactor Combined with Activated Carbon

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1616-1626 | Received 04 Jul 2020, Accepted 29 Aug 2020, Published online: 10 Sep 2020

References

  • Abdelhadi, S. O., C. G. Dosoretz, G. Rytwo, Y. Gerchman, and H. Azaizeh. 2017. Production of biochar from olive mill solid waste for heavy metal removal. Bioresource Technology 244 (Pt 1):759–67. doi:10.1016/j.biortech.2017.08.013.
  • Aftab, B., S. J. Khan, T. Maqbool, and N. eavy metals removal by osmotic membrane bioreactor (OMBR) and their effect on sludge properties. Desalination 403:117–27. doi:10.1016/j.desal.2016.07.003.
  • Ahmed, M. J. K., and M. Ahmaruzzaman. 2016. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering 10:39–47. doi:10.1016/j.jwpe.2016.01.014.
  • Ahn, C. K., D. Park, S. H. Woo, and J. M. Park. 2009. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. Journal of Hazardous Materials 164 (2-3):1130–6. doi:10.1016/j.jhazmat.2008.09.036.
  • Babich, H., and G. Stotzky. 1977. Sensitivity of Various Bacteria, Including Actinomycetes, and Fungi to Cadmium and the Influence of pH on Sensitivity. Applied and Environmental Microbiology 33 (3):681 LP-95. doi:10.1128/AEM.33.3.681-695.1977.
  • Baccar, R., J. Bouzid, M. Feki, and A. Montiel. 2009. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. Journal of Hazardous Materials 162 (2-3):1522–9. doi:10.1016/j.jhazmat.2008.06.041.
  • Bilal, M., J. A. Shah, T. Ashfaq, S. M. Gardazi, A. A. Tahir, A. Pervez, H. Haroon, and Q. Mahmood. 2013. Waste biomass adsorbents for copper removal from industrial wastewater-a review. Journal of Hazardous Materials 263 Pt 2:322–33. doi:10.1016/j.jhazmat.2013.07.071.
  • Blázquez, G., M. Calero, F. Hernáinz, G. Tenorio, and M. A. Martín-Lara. 2010. Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production. Chemical Engineering Journal 160 (2):615–22. doi:10.1016/j.cej.2010.03.085.
  • Blöcher, C., U. Bunse, B. Seβler, H. Chmiel, and H. Dieter Janke. 2004. Continuous regeneration of degreasing solutions from electroplating operations using a membrane bioreactor. Desalination 162 (1-3):315–26. doi:10.1016/S0011-9164(04)00065-7.
  • Carolin, C. F., P. S. Kumar, A. Saravanan, G. J. Joshiba, and M. Naushad. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering 5 (3):2782–99. doi:10.1016/j.jece.2017.05.029.
  • Celis, R., M. C. Hermosin, and J. Cornejo. 2000. Heavy metal adsorption by functionalized clays. Environmental Science & Technology 34 (21):4593–9. doi:10.1021/es000013c.
  • Chipasa, K. B. 2003. Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management 23 (2):135–43. doi:10.1016/S0956-053X(02)00065-X.
  • Council of the European Parliament. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities 50:1–73.
  • Duruibe, J. O., M. O. C. Ogwuegbu, and J. N. Egwurugwu. 2007. Heavy metal pollution and human biotoxic effects. International Journal of the Physical Sciences 2 (5):112–8. doi:10.5897/IJPS.9000289.
  • Espin, S., E. Martinez-Lopez, P. Jimenez, P. Maria-Mojica, and A. J. Garcia-Fernandez. 2014. Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus). Environmental Research. 129:59–68. doi:10.1016/j.envres.2013.11.008.
  • Feng, B., Z. Fang, J. Hou, X. Ma, Y. Huang, and L. Huang. 2013. Effects of heavy metal wastewater on the anoxic/aerobic-membrane bioreactor bioprocess and membrane fouling. Bioresource Technology 142:32–8. doi:10.1016/j.biortech.2013.05.019.
  • Foroutan, R., F. S. Khoo, B. Ramavandi, and S. Abbasi. 2017. Heavy metals removal from synthetic and shipyard wastewater using Phoenix dactylifera activated carbon. Desalination and Water Treatment 82:146–56. doi:10.5004/dwt.2017.20908.
  • Fu, F., and Q. Wang. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92 (3):407–18. doi:10.1016/j.jenvman.2010.11.011.
  • Ge, H., and J. Wang. 2017. Ear-like poly (acrylic acid)-activated carbon nanocomposite: A highly efficient adsorbent for removal of Cd(II) from aqueous solutions. Chemosphere 169:443–9. doi:10.1016/j.chemosphere.2016.11.069.
  • Gopi Kiran, M., K. Pakshirajan, and G. Das. 2016. Heavy metal removal using sulfate-reducing biomass obtained from a lab-scale upflow anaerobic-packed bed reactor. Journal of Environmental Engineering 142: 9-C4015010. doi:10.1061/(ASCE)EE.1943-7870.0001005.
  • Gopi Kiran, M., K. Pakshirajan, and G. Das. 2017. A new application of anaerobic rotating biological contactor reactor for heavy metal removal under sulfate reducing condition. Chemical Engineering Journal 321:67–75. doi:10.1016/j.cej.2017.03.080.
  • Guieysse, B., and Z. N. Norvill. 2014. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment. Journal of Hazardous Materials 267:142–52. doi:10.1016/j.jhazmat.2013.12.016.
  • Guo, T., S. Yao, H. Chen, X. Yu, M. Wang, and Y. Chen. 2017. Characteristics and adsorption study of the activated carbon derived from municipal sewage sludge. Water Science and Technology: A Journal of the International Association on Water Pollution Research 76 (7-8):1697–705. doi:10.2166/wst.2017.352.
  • Gurung, K., M. C. Ncibi, and M. Sillanpaa. 2017. Assessing membrane fouling and the performance of pilot-scale membrane bioreactor (MBR) to treat real municipal wastewater during winter season in Nordic regions. The Science of the Total Environment 579:1289–97. doi:10.1016/j.scitotenv.2016.11.122.
  • Habib, R., M. B. Asif, S. Iftekhar, Z. Khan, K. Gurung, V. Srivastava, and M. Sillanpaa. 2017. Influence of relaxation modes on membrane fouling in submerged membrane bioreactor for domestic wastewater treatment. Chemosphere 181:19–25. doi:10.1016/j.chemosphere.2017.04.048.
  • Hong, S., R. Aryal, S. Vigneswaran, M. A. H. Johir, and J. Kandasamy. 2012. Influence of hydraulic retention time on the nature of foulant organics in a high rate membrane bioreactor. Desalination 287:116–22. doi:10.1016/j.desal.2011.07.030.
  • Hua, M., S. Zhang, B. Pan, W. Zhang, L. Lv, and Q. Zhang. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials 211-212:317–31. doi:10.1016/j.jhazmat.2011.10.016.
  • Hulsen, T., E. M. Barry, Y. Lu, D. Puyol, J. Keller, and D. J. Batstone. 2016. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Research 100:486–95. doi:10.1016/j.watres.2016.04.061.
  • Katsou, E., S. Malamis, and M. Loizidou. 2011. Performance of a membrane bioreactor used for the treatment of wastewater contaminated with heavy metals. Bioresource Technology 102 (6):4325–32. doi:10.1016/j.biortech.2010.10.118.
  • Khan, Z. I., K. Ahmad, S. Rehman, S. Siddique, H. Bashir, A. Zafar, M. Sohail, S. Ali, E. Cazzato, and G. De Mastro. 2017. Health risk assessment of heavy metals in wheat using different water qualities: Implication for human health. Environmental Science and Pollution Research 24 (1):947–55. doi:10.1007/s11356-016-7865-9.
  • Kikot, P., M. Viera, C. Mignone, and E. Donati. 2010. Study of the effect of pH and dissolved heavy metals on the growth of sulfate-reducing bacteria by a fractional factorial design. Hydrometallurgy 104 (3-4):494–500. doi:10.1016/j.hydromet.2010.02.026.
  • Kunacheva, C., Y. N. A. Soh, A. P. Trzcinski, and D. C. Stuckey. 2017. Soluble microbial products (SMPs) in the effluent from a submerged anaerobic membrane bioreactor (SAMBR) under different HRTs and transient loading conditions. Chemical Engineering Journal 311:72–81. doi:10.1016/j.cej.2016.11.074.
  • Lee, S. M., and D. Tiwari. 2012. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science 59-60:84–102. doi:10.1016/j.clay.2012.02.006.
  • Lesmana, S. O., N. Febriana, F. E. Soetaredjo, J. Sunarso, and S. Ismadji. 2009. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal 44 (1):19–41. doi:10.1016/j.bej.2008.12.009.
  • Liu, R., L. J. Chen, X. Y. Song, D. Wei, W. Zheng, S. K. Qiu, and Y. Zhao. 2016. Treatment of Digested Piggery Wastewater with a Membrane Bioreactor. Environmental Engineering and Management Journal 15 (10):2181–8. doi:10.30638/eemj.2016.236.
  • Liu, R., X. Huang, L. Chen, X. Wen, and Y. Qian. 2005. Operational performance of a submerged membrane bioreactor for reclamation of bath wastewater. Process Biochemistry 40 (1):125–30. doi:10.1016/j.procbio.2003.11.038.
  • Lo, S. F., S. Y. Wang, M. J. Tsai, and L. D. Lin. 2012. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research and Design 90 (9):1397–406. doi:10.1016/j.cherd.2011.11.020.
  • Lv, D., Y. Liu, J. S. Zhou, K. L. Yang, Z. M. Lou, S. A. Baig, and X. H. Xu. 2018. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions. Applied Surface Science 428:648–58. doi:10.1016/j.apsusc.2017.09.151.
  • Mahdavi, S., M. Jalali, and A. Afkhami. 2013. Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 Nanoparticles. Chemical Engineering Communications 200 (3):448–70. doi:10.1080/00986445.2012.686939.
  • Mahmoudkhani, R., A. Torabian, A. H. Hassani, and R. Mahmoudkhani. 2014. Copper, cadmium and ferrous removal by membrane bioreactor. Apcbee Procedia 10 (79):79–83. 2014 doi:10.1016/j.apcbee.2014.10.020.
  • Martinez, M., N. Miralles, S. Hidalgo, N. Fiol, I. Villaescusa, and J. Poch. 2006. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials 133 (1-3):203–11. doi:10.1016/j.jhazmat.2005.10.030.
  • Min, X., L. Chai, C. Zhang, Y. Takasaki, and T. Okura. 2008. Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria. Chemosphere 72 (7):1086–91. doi:10.1016/j.chemosphere.2008.04.001.
  • Mojiri, A., and I. K. Branch. 2011. Review on membrane bioreactor, ion exchange and adsorption methods for landfill leachate treatment. Australian Journal of Basic and Applied Sciences 5 (12):1365–70.
  • Nelson, P. O., A. K. Chung, and M. C. Hudson. 1981. Factors affecting the fate of heavy-metals in the activated-sludge process. Journal Water Pollution Control Federation 53 (8):1323–33.
  • Petrinić, I., M. Čurlin, J. Racyte, and M. Simonič. 2009. Textile wastewater treatment with membrane bioreactor and water re-use. Tekstil: Journal of Textile & Clothing Technology 58:1–2.
  • Pires, C., A. P. Marques, A. Guerreiro, N. Magan, and P. M. Castro. 2011. Removal of heavy metals using different polymer matrixes as support for bacterial immobilisation. Journal of Hazardous Materials 191 (1-3):277–86. doi:10.1016/j.jhazmat.2011.04.079.
  • Raval, N. P., P. U. Shah, and N. K. Shah. 2016. Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management 179:1–20. doi:10.1016/j.jenvman.2016.04.045.
  • Saha, N., M. S. Rahman, M. B. Ahmed, J. L. Zhou, H. H. Ngo, and W. Guo. 2017. Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management 185:70–8. doi:10.1016/j.jenvman.2016.10.023.
  • Santos, F. S., B. C. Ricci, L. S. Franca Neta, and M. C. S. Amaral. 2017. Sugarcane vinasse treatment by two-stage anaerobic membrane bioreactor: Effect of hydraulic retention time on changes in efficiency, biogas production and membrane fouling. Bioresource Technology 245 (Pt A):342–50. doi:10.1016/j.biortech.2017.08.126.
  • Tazi-Pain, A., J. C. Schrotter, G. Bord, M. Payreaudeau, and H. Buisson. 2002. Recent improvement of the BIOSEP (R) process for industrial and municipal wastewater treatment. Desalination 146 (1-3):439–43. doi:10.1016/S0011-9164(02)00538-6.
  • U.S. EPA. 2004. Transfer and S. Division. 2004. Guidelines for water reuse, US Environmental Protection Agency.
  • U.S. EPA. 2005. Streamlining the General Pretreatment Regulations for Existing and New Sources of Pollution. 40 CFR, 122–403.
  • Volesky, B., and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnology Progress 11 (3):235–50. doi:10.1021/bp00033a001.
  • Wang, J., and C. Chen. 2009. Biosorbents for heavy metals removal and their future. Biotechnology Advances 27 (2):195–226. doi:10.1016/j.biotechadv.2008.11.002.
  • Wang, Q., W. Wei, Y. Gong, Q. Yu, Q. Li, J. Sun, and Z. Yuan. 2017. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Science of the Total Environment 587-588:510–21. doi:10.1016/j.scitotenv.2017.02.203.
  • Wang, Z., J. Ma, C. Y. Tang, K. Kimura, Q. Wang, and X. Han. 2014. Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science 468:276–307. doi:10.1016/j.memsci.2014.05.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.