243
Views
6
CrossRef citations to date
0
Altmetric
Spectroscopy

Ultrasensitive Determination of Malathion in Apples by Aptamer-Based Resonance Scattering

, , , , , ORCID Icon & show all
Pages 1639-1653 | Received 17 Jul 2020, Accepted 02 Sep 2020, Published online: 16 Sep 2020

References

  • Abnous, K., N. M. Danesh, M. Ramezani, M. Alibolandi, A. S. Emrani, P. Lavaee, and S. M. Taghdisi. 2018. A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer . Mikrochimica Acta 185 (4):216. doi:10.1007/s00604-018-2752-3.
  • Al’Abri, A. M., S. N. Abdul Halim, N. K. Abu Bakar, S. M. Saharin, B. Sherino, H. Rashidi Nodeh, and S. Mohamad. 2019. Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. Journal of Environmental Science and Health, Part B 54 (12):930–41. doi:10.1080/03601234.2019.1652072.
  • Amini, N., M. Shariatgorji, C. Crescenzi, and G. Thorsén. 2010. Screening and quantification of pesticides in water using a dual-function graphitized carbon black disk. Analytical Chemistry 82 (1):290–6. doi:10.1021/ac901946b.
  • Bagheri, E., K. Abnous, M. Alibolandi, M. Ramezani, and S. M. Taghdisi. 2018. Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens Bioelectron 111:1–9. doi:10.1016/j.bios.2018.03.070.
  • Bala, R., S. Dhingra, M. Kumar, K. Bansal, S. Mittal, R. K. Sharma, and N. Wangoo. 2017. Detection of organophosphorus pesticide—Malathion in environmental samples using peptide and aptamer based nanoprobes. Chemical Engineering Journal 311:111–6. doi:10.1016/j.cej.2016.11.070.
  • Bala, R., M. Kumar, K. Bansal, R. K. Sharma, and N. Wangoo. 2016. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosensors & Bioelectronics 85:445–9. doi:10.1016/j.bios.2016.05.042.
  • Bala, R., S. Mittal, R. K. Sharma, and N. Wangoo. 2018. A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 196:268–73. doi:10.1016/j.saa.2018.02.007.
  • Bozokalfa, G., H. Akbulut, B. Demir, E. Guler, Z. P. Gumus, D. Odaci Demirkol, E. Aldemir, S. Yamada, T. Endo, H. Coskunol, et al. 2016. Polypeptide functional surface for the aptamer immobilization: Electrochemical cocaine biosensing. Analytical Chemistry 88 (7):4161–7. doi:10.1021/acs.analchem.6b00760.
  • Dissanayake, N. M., J. S. Arachchilage, T. A. Samuels, and S. O. Obare. 2019. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides. Talanta 200:218–27. doi:10.1016/j.talanta.2019.03.042.
  • Feng, J., Z. Dai, X. Tian, and X. Jiang. 2018. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control. 85:443–52. doi:10.1016/j.foodcont.2017.10.027.
  • Haiss, W., N. T. Thanh, J. Aveyard, and D. G. Fernig. 2007. Determination of size and concentration of gold nanoparticles from UV-Vis Spectra. Analytical Chemistry 79 (11):4215–21. doi:10.1021/ac0702084.
  • Huang, Y., J. Yang, J. Cheng, Y. Zhang, and H. Yuan. 2019. A novel spectral method for determination of trace malathion using EryB as light scattering probe by resonance Rayleigh scattering technique. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 213:104–10. doi:10.1016/j.saa.2019.01.022.
  • Jiang, Z., Y. Fan, A. Liang, G. Wen, Q. Liu, and T. Li. 2010. resonance scattering spectral detection of trace Pb2+ using aptamer-modified AuPd nanoalloy as probe. Plasmonics 5 (4):375–81. doi:10.1007/s11468-010-9153-8.
  • Jiang, Z., G. Wen, Y. Fan, C. Jiang, Q. Liu, Z. Huang, and A. Liang. 2010. A highly selective nanogold-aptamer catalytic resonance scattering spectral assay for trace Hg(2+) using HAuCl(4)-ascorbic acid as indicator reaction. Talanta 80 (3):1287–91. doi:10.1016/j.talanta.2009.09.026.
  • Jiang, Z. L., Y. Y. Fan, M. Chen, A. H. Liang, X. Liao, G. Q. Wen, X. Shen, X. He, H. C. Pan, and A. H. Jiang. 2009. Resonance scattering spectral detection of trace Hg2+ using aptamer-modified nanogold as probe and nanocatalyst. Analytical Chemistry 81 (13):5439–45. doi:10.1021/ac900590g.
  • Jin, R., D. Kong, X. Zhao, H. Li, X. Yan, F. Liu, P. Sun, D. Du, Y. Lin, and G. Lu. 2019. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosensors & Bioelectronics 141:111473. doi:10.1016/j.bios.2019.111473.
  • Kaur, J., R. C. Boro, N. Wangoo, K. R. Singh, and C. R. Suri. 2008. Direct hapten coated immunoassay format for the detection of atrazine and 2,4-dichlorophenoxyacetic acid herbicides. Analytica Chimica Acta 607 (1):92–9. doi:10.1016/j.aca.2007.11.017.
  • Kharbouche, L., M. D. Gil Garcia, A. Lozano, H. Hamaizi, and M. M. Galera. 2019. Solid phase extraction of pesticides from environmental waters using an MSU-1 mesoporous material and determination by UPLC-MS/MS. Talanta 199:612–9. doi:10.1016/j.talanta.2019.02.092.
  • Kim, Y. S., N. H. Raston, and M. B. Gu. 2016. Aptamer-based nanobiosensors. Biosensors & Bioelectronics 76:2–19. doi:10.1016/j.bios.2015.06.040.
  • Korram, J., L. Dewangan, R. Nagwanshi, I. Karbhal, K. K. Ghosh, and M. L. Satnami. 2019. A carbon quantum dot–gold nanoparticle system as a probe for the inhibition and reactivation of acetylcholinesterase: Detection of pesticides. New Journal of Chemistry 43 (18):6874–82. doi:10.1039/C9NJ00555B.
  • Lai, X., S. Yan, N. Ye, and Y. Xiang. 2019. An ultrasensitive sensing of carbaryl by changing catalytic activity of AuNPs on Fehling reaction-resonance scattering spectroscopy. Food Analytical Methods 12 (10):2161–71. doi:10.1007/s12161-019-01563-y.
  • Lan, L., Y. Yao, J. Ping, and Y. Ying. 2017. Recent Progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Applied Materials & Interfaces 9 (28):23287–301. doi:10.1021/acsami.7b03937.
  • Li, H., Y. Qiao, J. Li, H. Fang, D. Fan, and W. Wang. 2016. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosensors & Bioelectronics 77:378–84. doi:10.1016/j.bios.2015.09.066.
  • Liang, A., L. Zhou, H. Qin, Y. Zhang, H. Ouyang, and Z. Jiang. 2011. A highly sensitive aptamer-nanogold catalytic resonance scattering spectral assay for melamine. Journal of Fluorescence 21 (5):1907–12. doi:10.1007/s10895-011-0888-1.
  • Lin, B., Y. Yan, M. Guo, Y. Cao, Y. Yu, T. Zhang, Y. Huang, and D. Wu. 2018. Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides. Food Chemistry 245:1176–82. doi:10.1016/j.foodchem.2017.11.038.
  • Liu, J., and Y. Lu. 2006. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols 1 (1):246–52. doi:10.1038/nprot.2006.38.
  • Liu, Y. S., Liu, Y. Zhang, D. Qin, Z. Zheng, G. Zhu, Y. Lv, Z. Liu, Z. Dong, X. Liao, et al. 2020. The degradation behaviour, residue distribution, and dietary risk assessment of malathion on vegetables and fruits in China by GC-FPD. Food Control. 107:106754. doi:10.1016/j.foodcont.2019.106754.
  • Luo, Q., J. Lai, P. Qiu, and X. Wang. 2018. An ultrasensitive fluorescent sensor for organophosphorus pesticides detection based on RB-Ag/Au bimetallic nanoparticles. Sensors and Actuators B: Chemical 263:517–23. doi:10.1016/j.snb.2018.02.101.
  • Luo, Y., L. He, S. Zhan, Y. Wu, L. Liu, W. Zhi, and P. Zhou. 2014. Ultrasensitive resonance scattering (RS) spectral detection for trace tetracycline in milk using aptamer-coated nanogold (ACNG) as a catalyst. Journal of Agricultural and Food Chemistry 62 (5):1032–7. doi:10.1021/jf403566e.
  • Ma, Q., Y. Wang, J. Jia, and Y. Xiang. 2018. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chemistry 249:98–103. doi:10.1016/j.foodchem.2018.01.022.
  • Rasolzadeh, F., P. Hashemi, F. N. Serenjeh, and S. Maleki. 2019. Cold column trapping-headspace micro-solid phase extraction for efficient preconcentration and GC-MS determination of pesticides in soil. Analytical Methods 11 (10):1393–9. doi:10.1039/C8AY02278J.
  • Razmi, N., B. Baradaran, M. Hejazi, M. Hasanzadeh, J. Mosafer, A. Mokhtarzadeh, and M. Guardia. 2018. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosensors & Bioelectronics 113:58–71. doi:10.1016/j.bios.2018.04.048.
  • Sanchez-Hernandez, J. C., X. A. Cares, and J. Dominguez. 2019. Exploring the potential enzymatic bioremediation of vermicompost through pesticide-detoxifying carboxylesterases. Ecotoxicology and Environmental Safety 183:109586doi:10.1016/j.ecoenv.2019.109586.
  • Sgobbi, L. F., and S. A. S. Machado. 2018. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron 100:290–7. doi:10.1016/j.bios.2017.09.019.
  • Timofeeva, I., D. Kanashina, L. Moskvin, and A. Bulatov. 2017. An evaporation-assisted dispersive liquid-liquid microextraction technique as a simple tool for high performance liquid chromatography tandem-mass spectrometry determination of insecticides in wine. Journal of Chromatography. A 1512:107–14. doi:10.1016/j.chroma.2017.07.034.
  • Xu, G., D. Huo, C. Hou, Y. Zhao, J. Bao, M. Yang, and H. Fa. 2018. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 178:1046–52. doi:10.1016/j.talanta.2017.08.086.
  • Yan, S., X. Lai, G. Du, and Y. Xiang. 2018. Identification of aminoglycoside antibiotics in milk matrix with a colorimetric sensor array and pattern recognition methods. Analytica Chimica Acta 1034:153–60. doi:10.1016/j.aca.2018.06.004.
  • Yan, S., X. Lai, Y. Wang, N. Ye, and Y. Xiang. 2019. Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow’s milk based on resonance scattering spectra and nanogold catalytic amplification. Food Chemistry 295:36–41. doi:10.1016/j.foodchem.2019.05.110.
  • Yu, R., Q. Liu, J. Liu, Q. Wang, and Y. Wang. 2016. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control. 60 :353–60. doi:10.1016/j.foodcont.2015.08.013.
  • Zhao, R., D. Jia, Y. Wen, and X. Yu. 2017. Cantilever-based aptasensor for trace level detection of nerve agent simulant in aqueous matrices. Sensors and Actuators B: Chemical 238:1231–9. doi:10.1016/j.snb.2016.09.089.
  • Zhou, W., P. J. Huang, J. Ding, and J. Liu. 2014. Aptamer-based biosensors for biomedical diagnostics. The Analyst 139 (11):2627–40. doi:10.1039/c4an00132j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.