241
Views
1
CrossRef citations to date
0
Altmetric
Biosensors

Fast Detection of Beta Galactosidase and Enzyme Kinetics with 4-Aminophenyl-β-D-Galactopyranoside as Substrate

, &
Pages 2070-2080 | Received 15 Jun 2020, Accepted 13 Oct 2020, Published online: 29 Oct 2020

References

  • Bard, A. J., L. R. Faulkner, J. Leddy, and C. G. Zoski. 1980. Electrochemical methods: Fundamentals and applications. New York, NY: Wiley.
  • Burestedt, E., C. Nistor, U. Schagerlöf, and J. Emnéus. 2000. An enzyme flow immunoassay that uses beta-galactosidase as the label and a cellobiose dehydrogenase biosensor as the label detector. Analytical Chemistry 72 (17):4171–7. doi:10.1021/ac000128z.
  • Debacq-Chainiaux, F., J. D. Erusalimsky, J. Campisi, and O. Toussaint. 2009. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols 4 (12):1798–806. doi:10.1038/nprot.2009.191.
  • Dimri, G. P., X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E. E. Medrano, M. Linskens, I. Rubelj, and O. Pereira-Smith. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America 92 (20):9363–7. doi:10.1073/pnas.92.20.9363.
  • Fourou, H., A. Zazoua, M. Braiek, and N. Jaffrezic-Renault. 2016. An enzyme biosensor based on beta-galactosidase inhibition for electrochemical detection of cadmium (II) and chromium (VI). International Journal of Environmental Analytical Chemistry 96 (9):1–885. doi:10.1080/03067319.2016.1209659.
  • Geng, Y.-Q., J.-T. Guan, X.-H. Xu, and Y.-C. Fu. 2010. Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochemical and Biophysical Research Communications 396 (4):866–9. doi:10.1016/j.bbrc.2010.05.011.
  • Hossain, S. Z., and J. D. Brennan. 2011. β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Analytical Chemistry 83 (22):8772–8. doi:10.1021/ac202290d.
  • Huber, R., C. Parfett, H. Woulfe-Flanagan, and D. Thompson. 1979. Interaction of divalent cations with beta-galactosidase (Escherichia coli). Biochemistry 18 (19):4090–5. doi:10.1021/bi00586a005.
  • Juers, D. H., S. Hakda, B. W. Matthews, and R. E. Huber. 2003. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase. Biochemistry 42 (46):13505–11. doi:10.1021/bi035506j.
  • Kagan, M., G. Printsmann, K. Kivirand, and T. Rinken. 2017. Determination of penicillins in milk by a dual-optrode biosensor. Analytical Letters 50 (5):819–28. doi:10.1080/00032719.2016.1202957.
  • Kaya, T., K. Nagamine, N. Matsui, T. Yasukawa, H. Shiku, and T. Matsue. 2004. On-chip electrochemical measurement of β-galactosidase expression using a microbial chip. Chemical Communications (2):248–9. doi:10.1039/B312462B.
  • Kirchner, C. N., C. Zhao, and G. Wittstock. 2007. Procedure 52 Analysis of the activity of β-galactosidase from E. coli by scanning electrochemical microscopy (SECM). Comprehensive Analytical Chemistry 49:e371–9.
  • Kumar, S., M. Nehra, J. Mehta, N. Dilbaghi, G. Marrazza, and A. Kaushik. 2019. Point-of-care strategies for detection of waterborne pathogens. Sensors 19 (20):4476. doi:10.3390/s19204476.
  • Laczka, O., R. M. Ferraz, N. Ferrer-Miralles, A. Villaverde, F. X. Muñoz, and F. J. del Campo. 2009. Fast electrochemical detection of anti-HIV antibodies: Coupling allosteric enzymes and disk microelectrode arrays. Analytica Chimica Acta 641 (1–2):1–6. doi:10.1016/j.aca.2009.03.008.
  • Lamberg, P., J. Hamit-Eminovski, M. Toscano, O. Eicher-Lorka, G. Niaura, T. Arnebrant, S. Shleev, and T. Ruzgas. 2017. Electrical activity of cellobiose dehydrogenase adsorbed on thiols: Influence of charge and hydrophobicity. Bioelectrochemistry (Amsterdam, Netherlands) 115:26–32. doi:10.1016/j.bioelechem.2017.02.001.
  • Lee, B. Y., J. A. Han, J. S. Im, A. Morrone, K. Johung, E. C. Goodwin, W. J. Kleijer, D. DiMaio, and E. S. Hwang. 2006. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5 (2):187–95. doi:10.1111/j.1474-9726.2006.00199.x.
  • Liu, H., H. Li, T. Ying, K. Sun, Y. Qin, and D. Qi. 1998. Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer. Analytica Chimica Acta 358 (2):137–44. doi:10.1016/S0003-2670(97)00576-X.
  • Mássen, M., Z. Liu, T. Haruyama, E. Kobatake, Y. Ikariyama, and M. Aizawa. 1995. Immunosensing with amperometric detection, using galactosidase as label and P-aminophenyl-β–galactopyranoside as substrate. Analytica Chimica Acta 304 (3):353–9. doi:10.1016/0003-2670(94)00645-3.
  • McCarter, J. D., D. L. Burgoyne, S. Miao, S. Zhang, J. W. Callahan, and S. G. Withers. 1997. Identification of Glu-268 as the catalytic nucleophile of human lysosomal beta-galactosidase precursor by mass spectrometry. The Journal of Biological Chemistry 272 (1):396–400. doi:10.1074/jbc.272.1.396.
  • Mittelmann, A. S., E. Z. Ron, and J. Rishpon. 2002. Amperometric quantification of total coliforms and specific detection of Escherichia coli. Analytical Chemistry 74 (4):903–7. doi:10.1021/ac0156215.
  • Nakkharat, P., and D. Haltrich. 2006. Purification and characterisation of an intracellular enzyme with beta-glucosidase and beta-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. Journal of Biotechnology 123 (3):304–13. doi:10.1016/j.jbiotec.2005.12.015.
  • Roskoski, R. 2007. Michaelis-Menten kinetics. In xPharm: The comprehensive pharmacology reference, 1–10. New York, NY: Elsevier.
  • Scheibel, O. V., and M. G. Schrlau. 2020. A self‐contained two‐electrode nanosensor for electrochemical analysis in aqueous microenvironments. Electroanalysis 32 (9):1914–21. doi:10.1002/elan.201900672.
  • Schuhmann, W. 2002. Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures. Journal of Biotechnology 82 (4):425–41. doi:10.1016/S1389-0352(01)00058-7.
  • Sharma, S. K., and R. M. Leblanc. 2017. Biosensors based on β-galactosidase enzyme: Recent advances and perspectives. Analytical Biochemistry 535:1–11. doi:10.1016/j.ab.2017.07.019.
  • Shukla, T. P., and L. E. Wierzbicki. 1975. Beta‐galactosidase technology: A solution to the lactose problem. Critical Reviews in Food Science & Nutrition 5 (3):325–56. doi:10.1080/10408397509527178.
  • Sinnott, M. L., and S. G. Withers. 1978. The necessity of magnesium cation for acid assistance aglycone departure in catalysis by Escherichia coli (lacZ) beta-galactosidase. The Biochemical Journal 175 (2):539–46. doi:10.1042/bj1750539.
  • Tavahodi, M., C. Schulz, A. Assarsson, R. Ortiz, R. Ludwig, C. Cabaleiro-Lago, B. Haghighi, and L. Gorton. 2018. Interaction of polymer-coated gold nanoparticles with cellobiose dehydrogenase: The role of surface charges. Journal of Electroanalytical Chemistry 819:226–33. doi:10.1016/j.jelechem.2017.10.035.
  • Tkáč, J., E. Šturdík, and P. Gemeiner. 2000. Novel glucose non-interference biosensor for lactose detection based on galactose oxidase-peroxidase with and without co-immobilised beta-galactosidase. The Analyst 125 (7):1285–9. doi:10.1039/b001432j.
  • Tschirhart, T., X. Y. Zhou, H. Ueda, C.-Y. Tsao, E. Kim, G. F. Payne, and W. E. Bentley. 2016. Electrochemical measurement of the β-galactosidase reporter from live cells: A comparison to the Miller assay. ACS Synthetic Biology 5 (1):28–35. doi:10.1021/acssynbio.5b00073.
  • Upadhyay, L. S. B., N. Kumar, and S. Chauhan. 2018. Minireview: Whole-cell, nucleotide, and enzyme inhibition-based biosensors for the determination of arsenic. Analytical Letters 51 (9):1265–79. doi:10.1080/00032719.2017.1375941.
  • Wang, D., J. Chen, and S. R. Nugen. 2017. Electrochemical detection of Escherichia coli from aqueous samples using engineered phages. Analytical Chemistry 89 (3):1650–7. doi:10.1021/acs.analchem.6b03752.
  • Zhang, Z., J. Zhou, and X. Du. 2019. Electrochemical biosensors for detection of foodborne pathogens. Micromachines 10 (4):222. doi:10.3390/mi10040222.
  • Zhao, C., J. K. Sinha, C. A. Wijayawardhana, and G. Wittstock. 2004. Monitoring β-galactosidase activity by means of scanning electrochemical microscopy. Journal of Electroanalytical Chemistry 561:83–91. doi:10.1016/j.jelechem.2003.07.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.