1,604
Views
28
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical Point-of Care (PoC) Determination of Interleukin-6 (IL-6) Using a Pyrrole (Py) Molecularly Imprinted Polymer (MIP) on a Carbon-Screen Printed Electrode (C-SPE)

, , &
Pages 2611-2623 | Received 05 Dec 2020, Accepted 18 Jan 2021, Published online: 02 Feb 2021

References

  • Algieri, C., E. Drioli, L. Guzzo, and L. Donato. 2014. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes. Sensors (Basel, Switzerland) 14 (8):13863–912. doi:10.3390/s140813863.
  • Aydin, E. B., M. Aydin, and M. K. Sezginturk. 2020. The development of an ultra-sensitive electrochemical immunosensor using a PPyr-NHS functionalized disposable ITO sheet for the detection of interleukin 6 in real human serums. New Journal of Chemistry 44:14228–38.
  • Aydin, E. B., M. Aydin, and M. K. Sezginturk. 2021. A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6. Talanta 222:121596.
  • Balducci, C., G. Santamaria, P. L. Vitola, E. Brandi, F. Grandi, A. R. Viscomi, M. Beeg, M. Gobbi, M. Salmona, S. Ottonello, et al. 2018. Doxycycline counteracts neuroinflammation restoring memory in Alzheimer's disease mouse models. Neurobiology of Aging 70:128–39. doi:10.1016/j.neurobiolaging.2018.06.002.
  • Berkenbosch, F., J. Biewenga, M. Brouns, J. M. Rozemuller, P. Strijbos, and A. M. van Dam. 1992. Cytokines and inflammatory proteins in Alzheimer’s Disease. Research in Immunology 143 (6):657–63. doi:10.1016/0923-2494(92)80052-M.
  • Cabinio, M., M. Saresella, F. Piancone, F. LaRosa, I. Marventano, F. R. Guerini, R. Nemni, F. Baglio, and M. Clerici. 2018. Association between Hippocampal Shape, Neuroinflammation, and Cognitive Decline in Alzheimer's Disease. Journal of Alzheimer's Disease 66 (3):1131–44. doi:10.3233/JAD-180250.
  • Cabral-Miranda, G., M. Gidlund, and M. G. F. Sales. 2014. Backside-surface imprinting as a new strategy to generate specific plastic antibody materials. Journal of Materials Chemistry. B 2 (20):3087–95. doi:10.1039/c3tb21740j.
  • Chen, W., Y. Ma, J. M. Pan, Z. H. Meng, G. Q. Pan, and B. Sellergren. 2015. Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers. Polymers 7 (9):1689–715. doi:10.3390/polym7091478.
  • Chen, L., X. Wang, W. Lu, X. Wu, and J. Li. 2016. Molecular imprinting: Perspectives and applications. Chemical Society Reviews 45 (8):2137–211. doi:10.1039/c6cs00061d.
  • Chen, N., H. Yang, Q. Li, L. J. Song, S. C. B. Gopinath, and D. Wu. 2020. An interdigitated aptasensor to detect interleukin-6 for diagnosing rheumatoid arthritis in serum. Biotechnology and Applied Biochemistry :33244818.
  • Cross, A. H., A. Herman, D. Fiore, C. Harp, B. Musch, and A. Bar-Or. 2017. CSF cell signature and biomarkers of neuroinflammation and neurodegeneration in MS: Preliminary results of the OBOE study. Multiple Sclerosis Journal 23:837–8.
  • Daniels, J.S. and N. Pourmand, 2007. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 19, 1239–1257.
  • Day, G. S., F. Amtashar, M. L. Yarbrough, P. Kortvelyessy, H. Pruss, R. C. Bucelli, M. J. Fritzler, W. Mason, D. F. Tang-Wai, C. Steriade, et al. 2018. Quantifying Biomarkers of Neuronal Injury, Neuroinflammation and Neurotransmission in Antibody-Mediated Encephalitis. Annals of Neurology 84:S39–S40.
  • Fan, G. C., X. L. Ren, C. Zhu, J. R. Zhang, and J. J. Zhu. 2014. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosensors & Bioelectronics 59:45–53. doi:10.1016/j.bios.2014.03.011.
  • Finneran, D. J., and K. R. Nash. 2019. Neuroinflammation and fractalkine signaling in Alzheimer's disease. Journal of Neuroinflammation 16 (1):8. doi:10.1186/s12974-019-1412-9.
  • Frasco, M. F., L. Truta, M. G. F. Sales, and F. T. C. Moreira. 2017. Imprinting Technology in Electrochemical Biomimetic Sensors. Sensors 17 (3):523–9. doi:10.3390/s17030523.
  • Gomes, R. S., F. T. C. Moreira, R. Fernandes, and M. G. F. Sales. 2018. Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes. Plos One 13 (5):e0196656–19. doi:10.1371/journal.pone.0196656.
  • Haupt, K., A. V. Linares, M. Bompart, and T. S. B. Bernadette. 2012. Molecularly Imprinted Polymers. Topics in Current Chemistry 325:1–28. doi:10.1007/128_2011_307.
  • Huang, J. F., H. Chen, W. B. Niu, D. W. H. Fam, A. Palaniappan, M. Larisika, S. H. Faulkner, C. Nowak, M. A. Nimmo, B. Liedberg, et al. 2015. Highly manufacturable graphene oxide biosensor for sensitive interleukin-6 detection. RSC Advances 5 (49):39245–51. doi:10.1039/C5RA05854F.
  • Huang, J. F., J. Harvey, W. H. D. Fam, M. A. Nimmo, and I. Y. A. Tok. 2013. Novel biosensor for Interleukin-6 detection. In: Chan, K. M., A. Subic, F. K. Fuss, and P. Clifton (Eds.), 6th Asia-Pacific Congress on Sports Technology: 195–200.
  • Janelidze, S., N. Mattsson, E. Stomrud, O. Lindberg, S. Palmqvist, H. Zetterberg, K. Blennow, and O. Hansson. 2018. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 91 (9):E867–E877. doi:10.1212/WNL.0000000000006082.
  • Khosravi, F., S. M. Loeian, and B. Panchapakesan. 2017. Ultrasensitive Label-Free Sensing of IL-6 Based on PASE Functionalized Carbon Nanotube Micro-Arrays with RNA-Aptamers as Molecular Recognition Elements. Biosensors 7 (4):17–3. doi:10.3390/bios7020017.
  • Lakhin, A. V., V. Z. Tarantul, and L. V. Gening. 2013. Aptamers: Problems, Solutions and Prospects. Acta Naturae 5 (4):34–43.
  • Liu, P.-Z., X.-W. Hu, C.-J. Mao, H.-L. Niu, J.-M. Song, B.-K. Jin, and S.-Y. Zhang. 2013. Electrochemiluminescence immunosensor based on graphene oxide nanosheets/polyaniline nanowires/CdSe quantum dots nanocomposites for ultrasensitive determination of human interleukin-6. Electrochimica Acta 113:176–80. doi:10.1016/j.electacta.2013.09.074.
  • Li, T., and M. H. Yang. 2011. Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6. Sensors and Actuators B: Chemical 158 (1):361–5. doi:10.1016/j.snb.2011.06.035.
  • Li, Q. R., K. G. Yang, Y. Liang, B. Jiang, J. X. Liu, L. H. Zhang, Z. Liang, and Y. K. Zhang. 2014. Surface Protein Imprinted Core-Shell Particles for High Selective Lysozyme Recognition Prepared by Reversible Addition-Fragmentation Chain Transfer Strategy. ACS Appl Mater Interfaces 6 (24):21954–60. doi:10.1021/am5072783.
  • Lou, Y., T. He, F. Jiang, J.-J. Shi, and J.-J. Zhu. 2014. A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels. Talanta 122:135–9. doi:10.1016/j.talanta.2014.01.016.
  • Marttinen, M.,. M. Takalo, T. Natunen, R. Wittrahm, S. Gabbouj, S. Kemppainen, V. Leinonen, H. Tanila, A. Haapasalo, and M. Hiltunen. 2018. Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer's Disease. Frontiers in Neuroscience 12:963 doi:10.3389/fnins.2018.00963.
  • Moreira, F. T. C., S. Sharma, R. A. F. Dutra, J. P. C. Noronha, A. E. G. Cass, and M. G. F. Sales. 2013. Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: Application to myoglobin detection. Biosens Bioelectron 45:237–44. doi:10.1016/j.bios.2013.02.012.
  • Munge, B. S., C. E. Krause, R. Malhotra, V. Patel, J. S. Gutkind, and J. F. Rusling. 2009. Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochemistry Communications 11 (5):1009–12. doi:10.1016/j.elecom.2009.02.044.
  • Ojeda, I., M. Moreno-Guzman, A. Gonzalez-Cortes, P. Yanez-Sedeno, and J. M. Pingarron. 2014. Electrochemical magnetoimmunosensor for the ultrasensitive determination of interleukin-6 in saliva and urine using poly-HRP streptavidin conjugates as labels for signal amplification. Analytical and Bioanalytical Chemistry 406 (25):6363–71. doi:10.1007/s00216-014-8055-6.
  • Park, J. C., S. H. Han, and I. Mook-Jung. 2020. Peripheral inflammatory biomarkers in Alzheimer's disease: A brief review. BMB Reports 53 (1):10–9. doi:10.5483/BMBRep.2020.53.1.309.
  • Peng, J., L.-N. Feng, Z.-J. Ren, L.-P. Jiang, and J.-J. Zhu. 2011. Synthesis of Silver Nanoparticle-Hollow Titanium Phosphate Sphere Hybrid as a Label for Ultrasensitive Electrochemical Detection of Human Interleukin-6. Small (Weinheim an Der Bergstrasse, Germany) 7 (20):2921–8. doi:10.1002/smll.201101210.
  • Popp, J., A. Oikonomidi, D. Tautvydaitė, L. Dayon, M. Bacher, E. Migliavacca, H. Henry, R. Kirkland, I. Severin, J. Wojcik, et al. 2017. Markers of neuroinflammation associated with Alzheimer's disease pathology in older adults. Brain, Behavior, and Immunity 62:203–11. doi:10.1016/j.bbi.2017.01.020.
  • Ribeiro, J. A., C. M. Pereira, A. F. Silva, and M. G. F. Sales. 2018. Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly(Toluidine Blue) as imprinted polymer receptor. Biosensors & Bioelectronics 109:246–54. doi:10.1016/j.bios.2018.03.011.
  • Sardesai, N. P., J. C. Barron, and J. F. Rusling. 2011. Carbon Nanotube Microwell Array for Sensitive Electrochemiluminescent Detection of Cancer Biomarker Proteins. Analytical Chemistry 83 (17):6698–703. doi:10.1021/ac201292q.
  • Sayyah, S. M., S. S. Abd El-Rehim, and M. M. El-Deeb. 2003. Electropolymerization of pyrrole and characterization of the obtained polymer films. Journal of Applied Polymer Science 90 (7):1783–92. doi:10.1002/app.12793.
  • Shi, J. J., T. T. He, F. Jiang, E. S. Abdel-Halim, and J. J. Zhu. 2014. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6. Biosensors & Bioelectronics 55:51–6. doi:10.1016/j.bios.2013.11.056.
  • Suk, K. 2006. Proteomics-based discovery of biomarkers and therapeutic targets in neurodegenerative diseases: Perspective of microglia and neuroinflammation. Expert Opinion on Therapeutic Patents 16 (3):237–47. doi:10.1517/13543776.16.3.237.
  • Tavares, A. P. M., and M. G. F. Sales. 2018. Novel electro-polymerized protein-imprinted materials using Eriochrome black T: Application to BSA sensing. Electrochimica Acta 262:214–25. doi:10.1016/j.electacta.2017.12.191.
  • Tertiş, M., B. Ciui, M. Suciu, R. Săndulescu, and C. Cristea. 2017. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochimica Acta 258:1208–18. doi:10.1016/j.electacta.2017.11.176.
  • Tertiş, M., P. I. Leva, D. Bogdan, M. Suciu, F. Graur, and C. Cristea. 2019. Impedimetric aptasensor for the label-free and selective detection of interleukin-6 for colorectal cancer screening. Biosensors & Bioelectronics 137:123–32. doi:10.1016/j.bios.2019.05.012.
  • Tertiş, M., G. Melinte, B. Ciui, I. Şimon, R. Ştiufiuc, R. Săndulescu, and C. Cristea. 2019b. A Novel Label Free Electrochemical Magnetoimmunosensor for Human Interleukin-6 Quantification in Serum. Electroanalysis 31 (2):282–92. doi:10.1002/elan.201800620.
  • Tsuneyasu, M., C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa. 2014. Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging. Japanese Journal of Applied Physics 53 (6S):06JL05. 16p_D5_9. doi:10.7567/JJAP.53.06JL05.
  • Uzun, L., and A. P. F. Turner. 2016. Molecularly-imprinted polymer sensors: Realising their potential. Biosensors & Bioelectronics 76:131–44. doi:10.1016/j.bios.2015.07.013.
  • Wang, G., H. Huang, G. Zhang, X. Zhang, B. Fang, and L. Wang. 2011. Dual Amplification Strategy for the Fabrication of Highly Sensitive Interleukin-6 Amperometric Immunosensor Based on Poly-Dopamine. Langmuir : The ACS Journal of Surfaces and Colloids 27 (3):1224–31. doi:10.1021/la1033433.
  • Wang, C. W., U. Manne, V. B. Reddy, D. K. Oelschlager, V. R. Katkoori, W. E. Grizzle, and R. Kapoor. 2010. Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples. Journal of Biomedical Optics 15 (6):067005 doi:10.1117/1.3523368.
  • Wu, Y. Y., J. L. Hsu, H. C. Wang, S. J. Wu, C. J. Hong, and I. H. J. Cheng. 2015. Alterations of the Neuroinflammatory Markers IL-6 and TRAIL in Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders Extra 5 (3):424–34. doi:10.1159/000439214.
  • Yang, T., S. Wang, H. Jin, W. Bao, S. Huang, and J. Wang. 2013. An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sensors and Actuators B: Chemical 178:310–5. doi:10.1016/j.snb.2012.12.107.
  • Zhang, J. J., Y. Liu, L. H. Hu, L. P. Jiang, and J. J. Zhu. 2011. "Proof-of-principle" concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode . Chemical Communications (Cambridge, England) 47 (23):6551–3. doi:10.1039/c1cc11565k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.