118
Views
4
CrossRef citations to date
0
Altmetric
Voltammetry

Electrochemical Determination of Levodopa and Cabergoline by a Magnetic Core-Shell Iron (II,III) Oxide@Silica/Multiwalled Carbon Nanotube/Ionic Liquid/2-(4-Oxo-3-Phenyl-3,4-Dihydroquinazolinyl)- N′-Phenyl-Hydrazine Carbothioamide (FSCNT/IL/2PHC) Modified Carbon Paste Electrode

, , , &
Pages 2638-2654 | Received 28 Sep 2020, Accepted 20 Jan 2021, Published online: 24 Feb 2021

References

  • Akbari Javar, H., Z. Garkani-Nejad, G. Dehghannoudeh, and H. Mahmoudi-Moghaddam. 2020. Development of a new electrochemical DNA biosensor based on Eu3+-doped NiO for determination of amsacrine as an anti-cancer drug: Electrochemical, spectroscopic and docking studies. Analytica Chimica Acta 1133:48–57. doi:10.1016/j.aca.2020.07.071.
  • Babaei, A., and M. Babazadeh. 2011. A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis 23 (7):1726–35. doi:10.1002/elan.201000755.
  • Baby, T. T., and S. Ramaprabhu. 2010. SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80 (5):2016–22. doi:10.1016/j.talanta.2009.11.010.
  • Beitollahi, H., F. Ebadinejad, F. Shojaie, and M. Torkzadeh-Mahani. 2016. A magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide. Analytical Methods 8 (32):6185–93. doi:10.1039/C6AY01438K.
  • Beitollahi, H., M. R. Ganjali, P. Norouzi, K. Movlaee, R. Hosseinzadeh, and S. Tajik. 2020. A novel electrochemical sensor based on graphene nanosheets and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate for electrocatalytic oxidation of cysteine and tyrosine. Measurement 152:107302–12. doi:10.1016/j.measurement.2019.107302.
  • Beitollahi, H., H. Karimi-Maleh, and H. Khabazzadeh. 2008. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenyl-hydrazinecarbothioamide. Analytical Chemistry 80 (24):9848–51. doi:10.1021/ac801854j.
  • Benvidi, A., P. Kakoolaki, H. R. Zare, and R. Vafazadeh. 2011. Electrocatalytic oxidation of hydrazine at a Co(II) complex multi-wall carbon nanotube modified carbon paste electrode. Electrochimica Acta 56 (5):2045–50. doi:10.1016/j.electacta.2010.11.083.
  • Bergamini, M. F., A. L. Santos, N. R. Stradiotto, and M. V. B. Zanoni. 2005. A disposable electrochemical sensor for the rapid determination of levodopa. Journal of Pharmaceutical and Biomedical Analysis 39 (12):54–9. doi:10.1016/j.jpba.2005.03.014.
  • Calabresi, P., and D. G. Standaert. 2019. Dystonia and levodopa-induced dyskinesias in Parkinson's disease: Is there a connection? Neurobiology of Disease 132:104579–86. doi:10.1016/j.nbd.2019.104579.
  • Calam, T. T. 2020. Selective and sensitive determination of paracetamol and levodopa with using electropolymerized 3, 5‐diamino‐1, 2, 4‐triazole film on glassy carbon electrode. Electroanalysis. doi:10.1002/elan.202060477.
  • Daneshgar, P., P. Norouzi, M. R. Ganjali, A. Ordikhani-Seyedlar, and H. Eshraghi. 2009. A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method. Colloids and Surfaces. B, Biointerfaces 68 (1):27–32. doi:10.1016/j.colsurfb.2008.09.019.
  • Dokur, E., O. Gorduk, and Y. Sahin. 2020. Differential pulse voltammetric determination of folic acid using a poly(cystine) modified pencil graphite electrode. Analytical Letters 53 (13):2060–78. doi:10.1080/00032719.2020.1728540.
  • Duan, P., X. Yang, G. Huang, J. Wei, Z. Sun, and X. Hu. 2019. La2O3 -CuO2/CNTs electrode with excellent electrocatalytic oxidation ability for ceftazidime removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 569:119–28. doi:10.1016/j.colsurfa.2019.02.056.
  • Fabbri, M., C. Pongmala, C. A. Artusi, A. Romagnolo, M. G. Rizzone, M. Zibetti, and L. Lopiano. 2019. Long-term effect of levodopa-carbidopa intestinal gel on axial signs in Parkinson’s disease. Acta Neurologica Scandinavica 140 (2):157–61. doi:10.1111/ane.13110.
  • Hussain, G., M. Ge, C. Zhao, and D. S. Silvester. 2019. Fast responding hydrogen gas sensors using platinum nanoparticle modified microchannels and ionic liquids. Analytica Chimica Acta 1072:35–45. doi:10.1016/j.aca.2019.04.042.
  • Jahani, S., and H. Beitollahi. 2016. Carbon paste electrode modified with TiO2/Fe3O4/MWCNT nanocomposite and ionic liquids as a voltammetric sensor for sensitive ascorbic acid and tryptophan detection. Analytical and Bioanalytical Electrochemistry 8 (2):158–68.
  • Jonoush, Z. A., A. Rezaee, and A. Ghaffarinejad. 2020. Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: Selectivity and energy consumption studies. Journal of Cleaner Production 242:118569–80. doi:10.1016/j.jclepro.2019.118569.
  • Liu, R., Y. J. Tan, T. Zhong, and C. Lei. 2018. Determination of antimony (III) by differential pulse voltammetry using a gold nanoparticle–ionic liquid–graphene-modified selenium-doped carbon paste electrode. Analytical Letters 51 (15):2351–61. doi:10.1080/00032719.2018.1424174.
  • Maghsoodlou, M. T., N. Hazeri, S. M. H. Khorasani, H. M. Moghaddam, M. Nassiri, and J. Salehzadeh. 2009. A facile synthesis of stable phosphorus ylides containing chlorine and sulfur derived from 6-chloro-2-benzoxazolethiol and 2-chloro-phenothiazine. Phosphorus, Sulfur and Silicon and the Related Elements 184 (7):1713–21. doi:10.1080/10426500802275093.
  • Mahmoudi Moghaddam, H., and M. Malakootian. 2018. Differential pulse voltammetric determination of levodopa in pharmaceutical and biological samples using NiO/graphene oxide nanocomposite modified graphite screen printed electrode. Analytical and Bioanalytical Electrochemistry 10 (5):520–30.
  • Masi, M., P. Bollella, and E. Katz. 2019. DNA release from a modified electrode triggered by a bioelectrocatalytic process. ACS Applied Materials & Interfaces 11 (50):47625–34. doi:10.1021/acsami.9b18427.
  • Mazloum-Ardakani, M., S. H. Ahmadi, Z. Safaei Mahmoudabadi, and A. Khoshroo. 2016. Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement 91:162–7. doi:10.1016/j.measurement.2016.05.035.
  • Mazloum-Ardakani, M., H. Beitollahi, M. Kazem Amini, F. Mirkhalaf, B. F. Mirjalili, and A. Akbari. 2011. Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid. The Analyst 136 (9):1965–70. doi:10.1039/c0an00823k.
  • Moghaddam, H. M. 2011. Electrocatalytic determination of carbidopa and acetaminophen using a modified carbon nanotube paste electrode. International Journal of Electrochemical Science 6 (12):6557–66.
  • Moghaddam, H. M., H. Beitollahi, G. Dehghannoudeh, and H. Forootanfar. 2017. A label-free electrochemical biosensor based on carbon paste electrode modified with graphene and Ds-DNA for the determination of the anti-cancer drug tamoxifen. Journal of the Electrochemical Society 164 (7):B372–6. doi:10.1149/2.0561707jes.
  • Moghaddam, H. M., H. Beitollahi, S. Tajik, H. Karimi Maleh, and G. D. Noudeh. 2015. Simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified graphene nanosheets paste electrode. Research on Chemical Intermediates 41 (9):6885–96. doi:10.1007/s11164-014-1785-4.
  • Mohammadi, S. Z., H. Beitollahi, H. Allahabadi, and T. Rohani. 2019. Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification. Journal of Electroanalytical Chemistry 847:113223–9. doi:10.1016/j.jelechem.2019.113223.
  • Movlaee, K., H. Beitollahi, M. R. Ganjali, and P. Norouzi. 2017. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Microchimica Acta 184 (9):3281–9. doi:10.1007/s00604-017-2291-3.
  • Naqvi, S. T. R., B. Shirinfar, D. Hussain, S. Majeed, M. N. Ashiq, Y. Aslam, and N. Ahmed. 2019. Electrochemical sensing of ascorbic acid, hydrogen peroxide and glucose by bimetallic (Fe, Ni)−CNTs composite modified electrode. Electroanalysis 31 (5):851–7. doi:10.1002/elan.201800768.
  • Pastor, P., and E. Tolosa. 2003. Cabergoline in the treatment of Parkinson’s disease. Neurologia (Barcelona, Spain) 18 (4):202–9.
  • Pedrozo-Peñafiel, M. J., A. D. Falco, J. R. Miranda-Andrades, J. M. S. Almeida, D. G. Larrudé, N. A. Rey, and R. Q. Aucelio. 2020. Square wave voltammetric determination of 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone (INHHQ), a promising metal-protein attenuating compound for the treatment of Alzheimer’s disease, using a multiwalled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE). Analytical Letters 53 (14):2337–54. doi:10.1080/00032719.2020.1741603.
  • Phelane, L., C. Gouveia-Caridade, M. M. Barsan, P. G. L. Baker, C. M. A. Brett, and E. I. Iwuoha. 2020. Electrochemical determination of tyrosine using a novel tyrosinase multi-walled carbon nanotube (MWCNT) polysulfone modified glassy carbon electrode (GCE). Analytical Letters 53 (2):308–21. doi:10.1080/00032719.2019.1649417.
  • Singh, B. P., D. Singh, R. B. Mathur, and T. L. Dhami. 2008. Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites. Nanoscale Research Letters 3 (11):444–53. doi:10.1007/s11671-008-9179-4.
  • Staniland, S. S., A. Rawlings, J. Bramble, J. Tolosa, O. Wilson, J. C. García-Martínez, and C. Binns. 2014. Novel methods for the synthesis of magnetic nanoparticles. Frontiers of Nanoscience 6 (c):85–128. doi:10.1016/B978-0-08-098353-0.00003-8.
  • Steece-Collier, K., J. A. Stancati, N. J. Collier, I. M. Sandoval, N. M. Mercado, C. E. Sortwell, T. J. Collier, and F. P. Manfredsson. 2019. Genetic silencing of striatal CaV1.3 prevents and ameliorates levodopa dyskinesia. Movement Disorders: Official Journal of the Movement Disorder Society 34 (5):697–707. doi:10.1002/mds.27695.
  • Tai, L.-C., T. S. Liaw, Y. Lin, H. Y. Y. Nyein, M. Bariya, W. Ji, M. Hettick, C. Zhao, J. Zhao, L. Hou, et al. 2019. Wearable sweat band for noninvasive levodopa monitoring. Nano Letters 19 (9):6346–51. doi:10.1021/acs.nanolett.9b02478.
  • Teixeira, M. F. S., M. F. Bergamini, C. M. P. Marques, and N. Bocchi. 2004. Voltammetric determination of L-dopa using an electrode modified with trinuclear ruthenium ammine complex (Ru-red) supported on Y-type zeolite. Talanta 63 (4):1083–8. doi:10.1016/j.talanta.2004.01.018.
  • Thunkhamrak, C., P. Chuntib, K. Ounnunkad, P. Banet, P. H. Aubert, G. Saianand, A. I. Gopalan, and J. Jakmunee. 2020. Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode. Talanta 208:120389–97. doi:10.1016/j.talanta.2019.120389.
  • Verschuur, C. V. M., S. R. Suwijn, J. A. Boel, B. Post, B. R. Bloem, J. J. van Hilten, T. van Laar, G. Tissingh, A. G. Munts, G. Deuschl, et al. 2019. Randomized delayed-start trial of levodopa in Parkinson's disease. The New England Journal of Medicine 380 (4):315–24. doi:10.1056/NEJMoa1809983.
  • Ye, Y., S. Mao, S. He, X. Xu, X. Cao, Z. Wei, and S. Gunasekaran. 2020. Ultrasensitive electrochemical genosensor for detection of CaMV35S gene with Fe3O4-Au@Ag nanoprobe. Talanta 206:120205–12. doi:10.1016/j.talanta.2019.120205.
  • Zappi, D., S. Gabriele, L. Gontrani, D. Dini, C. Sadun, F. Marini, and M. L. Antonelli. 2019. Biologically friendly room temperature ionic liquids and nanomaterials for the development of innovative enzymatic biosensors: Part II. Talanta 194:26–31. doi:10.1016/j.talanta.2018.10.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.