251
Views
3
CrossRef citations to date
0
Altmetric
Fluorescence

Characterization of the Stability of Vegetable Oil by Synchronous Fluorescence Spectroscopy and Differential Scanning Calorimetry (DSC)

, , , &
Pages 2676-2686 | Received 02 Sep 2020, Accepted 27 Jan 2021, Published online: 12 Feb 2021

References

  • Alvarenga, B. R., F. A. N. Xavier, F. L. F. Soares, and R. L. Carneiro. 2018. Thermal stability assessment of vegetable oils by Raman spectroscopy and chemometrics. Food Analytical Methods 11 (7):1969–76. doi:10.1007/s12161-018-1160-y.
  • Arain, S., S. T. H. Sherazi, M. I. Bhanger, F. N. Talpur, and S. A. Mahesar. 2009. Oxidative stability assessment of Bauhinia purpurea seed oil in comparison to two conventional vegetable oils by differential scanning calorimetry and Rancimat methods. Thermochimica Acta 484 (1–2):1–3. doi:10.1016/j.tca.2008.11.004.
  • Cao, J., C. Li, R. Liu, X. Liu, Y. Fan, and Z. Deng. 2017. Combined application of fluorescence spectroscopy and chemometrics analysis in oxidative deterioration of edible oils. Food Analytical Methods 10 (3):649–58. doi:10.1007/s12161-016-0587-2.
  • Chiavaro, E., M. T. Rodriguez-Estrada, C. Barnaba, E. Vittadini, L. Cerretani, and A. Bendini. 2008. Differential scanning calorimetry: A potential tool for discrimination of olive oil commercial categories. Analytica Chimica Acta 625 (2):215–26. doi:10.1016/j.aca.2008.07.031.
  • Choe, E., and D. B. Min. 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety 5 (4):169–86. doi:10.1111/j.1541-4337.2006.00009.x.
  • Divya, O., and A. K. Mishra. 2008. Understanding the concept of concentration-dependent red-shift in synchronous fluorescence spectra: Prediction of lambda(SFS)(max) and optimization of Deltalambda for synchronous fluorescence scan. Analytica Chimica Acta 630 (1):47–56. doi:10.1016/j.aca.2008.09.056.
  • Elmas, S. N. K., F. N. Arslan, G. Akin, A. Kenar, H. G. Janssen, and I. Yilmaz. 2019. Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold-pressed grape seed oil adulteration: Qualitative and quantitative study. Talanta 196:22–31. doi:10.1016/j.talanta.2018.12.026.
  • Goh, K. M., M. Maulidiani, R. Rudiyanto, Y. H. Wong, M. Y. Ang, W. M. Yew, F. Abas, O. M. Lai, Y. Wang, and C. P. Tan. 2019. Rapid assessment of total MCPD esters in palm-based cooking oil using ATR-FTIR application and chemometric analysis. Talanta 198:215–23. doi:10.1016/j.talanta.2019.01.111.
  • Gu, H., Y. Sun, S. Liu, S. Li, and W. Zhang. 2018. A feasibility study of the rapid evaluation of oil oxidation using synchronous fluorescence spectroscopy. Food Analytical Methods 11 (12):3464–70. doi:10.1007/s12161-018-1315-x.
  • Li, X., W. Kong, W. Shi, and Q. Shen. 2016. A combination of chemometric methods and GC-MS for the classification of edible vegetable oils. Chemometrics and Intelligent Laboratory Systems 155:145–50. doi:10.1016/j.chemolab.2016.03.028.
  • Liu, Y., P. Wu, Q. Liu, H. Luo, S. Cao, G. Lin, D. Fu, X. Zhong, and Y. Li. 2016. A simple fluorescence spectroscopic approach for simultaneous and rapid detection of four polycyclic aromatic hydrocarbons (PAH4) in vegetable oils. Food Analytical Methods 9 (11):3209–17. doi:10.1007/s12161-016-0515-5.
  • Micić, D. M., S. B. Ostojić, M. B. Simonović, G. Krstić, L. L. Pezo, and B. R. Simonović. 2015. Kinetics of blackberry and raspberry seed oils oxidation by DSC. Thermochimica Acta 601:39–44. doi:10.1016/j.tca.2014.12.018.
  • Popescu, R., D. Costinel, O. R. Dinca, A. Marinescu, I. Stefanescu, and R. E. Ionete. 2015. Discrimination of vegetable oils using NMR spectroscopy and chemometrics. Food Control. 48:84–90. doi:10.1016/j.foodcont.2014.04.046.
  • Poulli, K. I., N. V. Chantzos, G. A. Mousdis, and C. A. Georgiou. 2009a. Synchronous fluorescence spectroscopy: Tool for monitoring thermally stressed edible oils. Journal of Agricultural and Food Chemistry 57 (18):8194–201. doi:10.1021/jf902758d.
  • Poulli, K. I., G. A. Mousdis, and C. A. Georgiou. 2009b. Monitoring olive oil oxidation under thermal and UV stress through synchronous fluorescence spectroscopy and classical assays. Food Chemistry 117 (3):499–503. doi:10.1016/j.foodchem.2009.04.024.
  • Rejczak, T., and T. Tuzimski. 2017. Method development for sulfonylurea herbicides analysis in rapeseed oil samples by HPLC–DAD: Comparison of zirconium-based sorbents and EMR-lipid for clean-up of QuEChERS extract. Food Analytical Methods 10 (11):3666–79. doi:10.1007/s12161-017-0939-6.
  • Samari, F., and S. Yousefinejad. 2017. Quantitative structural modeling on the wavelength interval (Δ λ) in synchronous fluorescence spectroscopy. Journal of Molecular Structure 1148 (15):101–10. doi:10.1016/j.molstruc.2017.07.033.
  • Sikorska, E., A. Gliszczyńska-Swigło, I. Khmelinskii, and M. Sikorski. 2005. Synchronous fluorescence spectroscopy of edible vegetable oils. Quantification of tocopherols. Journal of Agricultural and Food Chemistry 53 (18):6988–94. doi:10.1021/jf0507285.
  • Srivastava, Y., A. D. Semwal, V. A. Sajeevkumar, and G. K. Sharma. 2017. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Journal of Food Science and Technology 54 (1):45–54. doi:10.1007/s13197-016-2427-1.
  • Wadood, S. A., B. Guo, X. Zhang, I. Hussain, and Y. Wei. 2020. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchemical Journal 152:104295. doi:10.1016/j.microc.2019.104295.
  • Wroniak, M., and A. Rękas. 2016. Nutritional value of cold-pressed rapeseed oil during long term storage as influenced by the type of packaging material, exposure to light & oxygen and storage temperature. Journal of Food Science and Technology 53 (2):1338–47. doi:10.1007/s13197-015-2082-y.
  • Wu, X., Z. Zhao, R. Tian, S. Gao, Y. Niu, and H. Liu. 2021. Exploration of total synchronous fluorescence spectroscopy combined with pre-trained convolutional neural network in the identification and quantification of vegetable oil. Food Chemistry 335:127640. doi:10.1016/j.foodchem.2020.127640.
  • Xu, T., J. Li, Y. Fan, T. Zheng, and Z. Deng. 2015. Comparison of oxidative stability among edible oils under continuous frying conditions. International Journal of Food Properties 18 (7):1478–90. doi:10.1080/10942912.2014.913181.
  • Xu, J., X. Liu, and Y. Wang. 2016. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique. Food Chem 212:72–7. doi:10.1016/j.foodchem.2016.05.158.
  • Zhang, Z., D. Li, L. Zhang, Y. Liu, and X. Wang. 2014. Heating effect on the DSC melting curve of flaxseed oil. Journal of Thermal Analysis and Calorimetry 115 (3):2129–35. doi:10.1007/s10973-013-3270-5.
  • Zhang, Y., T. Li, H. Chen, S. Chen, P. Guo, and Y. Li. 2019. Excitation wavelength analysis of a laser-induced fluorescence technique for quantification of extra virgin olive oil adulteration. Applied Optics 58 (16):4484–91. doi:10.1364/AO.58.004484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.