271
Views
3
CrossRef citations to date
0
Altmetric
Fluorescence

Determination of Hydrogen Sulfide in Endoplasmic Reticulum by Two-Photon Fluorescence

, , , &
Pages 2687-2699 | Received 27 Nov 2020, Accepted 28 Jan 2021, Published online: 11 Feb 2021

References

  • Abe, K., and H. Kimura. 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 16 (3):1066–71. doi:10.1523/JNEUROSCI.16-03-01066.1996.
  • Boehning, D., and S. H. Snyder. 2003. Novel neural modulators. Annual Review of Neuroscience 26 (1):105–31. doi:10.1146/annurev.neuro.26.041002.131047.
  • Cao, S. S., and R. J. Kaufman. 2013. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opinion on Therapeutic Targets 17 (4):437–48. doi:10.1517/14728222.2013.756471.
  • Cao, S. S., and R. J. Kaufman. 2014. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & Redox Signaling 21 (3):396–413. doi:10.1089/ars.2014.5851.
  • Cheng, H. B., Y. Y. Li, B. Z. Tang, and J. Y. Yoon. 2020. Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. Chemical Society Reviews 49 (1):21–31. doi:10.1039/C9CS00326F.
  • Dong, S., L. Zhang, Y. Lin, C. Ding, and C. Lu. 2020. Luminescent probes for hypochlorous acid in vitro and in vivo. The Analyst 145 (15):5068–89. doi:10.1039/D0AN00645A.
  • Ederli, L., L. Reale, L. Madeo, F. Ferranti, C. Gehring, M. Fornaciari, B. Romano, and S. Pasqualin. 2009. NO release by nitric oxide donors in vitro and in planta. Plant Physiology and Biochemistry : PPB 47 (1):42–8. doi:10.1016/j.plaphy.2008.09.008.
  • Ellgaard, L., and A. Helenius. 2003. Quality control in the endoplasmic reticulum. Nature Reviews. Molecular Cell Biology 4 (3):181–91. doi:10.1038/nrm1052.
  • Eto, K., T. Asada, K. Arima, T. Makifuchi, and H. Kimura. 2002. Brain hydrogen sulfide is severely decreased in Alzheimer's disease. Biochemical and Biophysical Research Communications 293 (5):1485–8. doi:10.1016/S0006-291X(02)00422-9.
  • Gao, M., F. B. Yu, C. J. Lv, J. Choo, and L. X. Chen. 2017. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chemical Society Reviews 46 (8):2237–71. doi:10.1039/c6cs00908e.
  • Guan, W., W. Zhou, J. Lu, and C. Lu. 2015. Luminescent films for chemo- and biosensing. Chemical Society Reviews 44 (19):6981–7009. doi:10.1039/c5cs00246j.
  • Holwerda, K. M., S. A. Karumanchi, and A. T. Lely. 2015. Hydrogen sulfide: Role in vascular physiology and pathology. Current Opinion in Nephrology and Hypertension 24 (2):170–6. doi:10.1097/MNH.0000000000000096.
  • Jain, S. K., R. Bull, J. L. Rains, P. F. Bass, S. N. Levine, S. Reddy, R. McVie, and J. A. Bocchini. Jr. 2010. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxidants & Redox Signaling 12 (11):1333–7. doi:10.1089/ars.2009.2956.
  • Kamoun, P., M.-C. Belardinelli, A. Chabli, K. Lallouchi, and B. Chadefaux-Vekemans. 2003. Endogenous hydrogen sulfide overproduction in Down syndrome. American Journal of Medical Genetics. Part A 116A (3):310–1. doi:10.1002/ajmg.a.10847.
  • Kimura, H. 2013. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochemistry International 63 (5):492–7. doi:10.1016/j.neuint.2013.09.003.
  • Krishnan, N., C. Fu, D. J. Pappin, and N. K. Tonks. 2011. H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Science Signaling 4 (203):ra86. doi:10.1126/scisignal.2002329.
  • Li, W., X. Y. Gong, X. P. Fan, S. L. Yin, D. D. Su, X. B. Zhang, and L. Yuan. 2019. Recent advances in molecular fluorescent probes for organic phosphate biomolecules recognition. Chinese Chemical Letters 30 (10):1775–90. doi:10.1016/j.cclet.2019.07.056.
  • Li, K., L. L. Li, Q. Zhou, K. K. Yu, J. S. Kim, and X. Q. Yu. 2019. Reaction-based fluorescent probes for SO2 derivatives and their biological applications. Coordination Chemistry Reviews 388:310–33. doi:10.1016/j.ccr.2019.03.001.
  • Li, F., J. Luo, Z. X. Wu, T. Xiao, O. Zeng, L. Li, Y. Li, and J. Yang. 2016. Hydrogen sulfide exhibits cardioprotective effects by decreasing endoplasmic reticulum stress in a diabetic cardiomyopathy rat model. Molecular Medicine Reports 14 (1):865–73. doi:10.3892/mmr.2016.5289.
  • Lin, V. S., and C. J. Chang. 2012. Fluorescent probes for sensing and imaging biological hydrogen sulfide. Current Opinion in Chemical Biology 16 (5–6):595–601. doi:10.1016/j.cbpa.2012.07.014.
  • Liu, H. W., L. L. Chen, C. Y. Xu, Z. Li, H. Y. Zhang, X. B. Zhang, and W. H. Tan. 2018. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews 47 (18):7140–80. doi:10.1039/c7cs00862g.
  • Luo, Y. N., C. Z. Zhu, D. Du, and Y. H. Lin. 2019. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Analytica Chimica Acta 1061:1–12. doi:10.1016/j.aca.2019.02.045.
  • Nakagawa, T., H. Zhu, N. Morishima, E. Li, J. Xu, B. A. Yankner, and J. Yuan. 2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403 (6765):98–103. doi:10.1038/47513.
  • Park, S. H., N. Kwon, J. H. Lee, J. Yoon, and I. Shin. 2020. Synthetic ratiometric fluorescent probes for detection of ions. Chemical Society Reviews 49 (1):143–79. doi:10.1039/C9CS00243J.
  • Parmar, V. M., and M. Schröder. 2012. Sensing endoplasmic reticulum stress. Advances in Experimental Medicine and Biology 738:153–68. doi:10.1007/978-1-4614-1680-7_10.
  • Paul, B. D., and S. H. Snyder. 2012. H2S signalling through protein sulfhydration and beyond. Nature Reviews. Molecular Cell Biology 13 (8):499–507. doi:10.1038/nrm3391.
  • Polhemus, D. J., and D. J. Lefer. 2014. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circulation Research 114 (4):730–7. doi:10.1161/CIRCRESAHA.114.300505.
  • Sedgwick, A. C., L. L. Wu, H. H. Han, S. D. Bull, X. P. He, T. D. James, J. L. Sessler, B. Z. Tang, H. Tian, and J. Yoon. 2018. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews 47 (23):8842–80. doi:10.1039/c8cs00185e.
  • Shimamoto, K., and K. Hanaoka. 2015. Fluorescent probes for hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies. Nitric Oxide : Biology and Chemistry 46:72–9. doi:10.1016/j.niox.2014.11.008.
  • Shu, W., S. P. Zang, C. Wang, M. X. Gao, J. Jing, and X. L. Zhang. 2020. An Endoplasmic reticulum-targeted ratiometric fluorescent probe for the sensing of hydrogen Sulfide in Living Cells and Zebrafish. Analytical Chemistry 92 (14):9982–8. doi:10.1021/acs.analchem.0c01623.
  • Siebert, N., D. Cantré, C. Eipel, and B. Vollmar. 2008. H2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of KATP channels. American Journal of Physiology Gastrointestinal & Liver Physiology 295 (6):1266–73. doi:10.1152/ajpgi.90484.2008.
  • Song, M., and J. R. Cubillos-Ruiz. 2019. Endoplasmic reticulum stress responses in intratumoral immune cells: Implications for cancer immunotherapy. Trends in Immunology 40 (2):128–41. doi:10.1016/j.it.2018.12.001.
  • Sun, W., M. Li, J. L. Fan, and X. J. Peng. 2019. Activity-based sensing and theranostic probes based on photoinduced electron transfer. Accounts of Chemical Research 52 (10):2818–31. doi:10.1021/acs.accounts.9b00340.
  • Tang, Y. H., A. Xu, Y. Y. Ma, G. P. Xu, S. Y. Gao, and W. Y. Lin. 2017. A turn-on endoplasmic reticulum-targeted two-photon fluorescent probe for hydrogen sulfide and bio-imaging applications in living cells, tissues, and zebrafish . Scientific Reports 7 (1):12944. doi:10.1038/s41598-017-13325-z.
  • Tanizawa, K. 2011. Production of H2S by 3-mercaptopyruvate sulphurtransferase. Journal of Biochemistry 149 (4):357–9. doi:10.1093/jb/mvr018.
  • Tian, M. G., Y. Y. Ma, and W. Y. Lin. 2019. Fluorescent probes for the visualization of cell viability. Accounts of Chemical Research 52 (8):2147–57. doi:10.1021/acs.accounts.9b00289.
  • Wallace, J. L., R. W. Blackler, M. V. Chan, G. J. Da Silva, W. Elsheikh, K. L. Flannigan, I. Gamaniek, A. Manko, L. Wang, J. P. Motta, et al. 2015. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: Translation to therapeutics. Antioxidants & Redox Signaling 22 (5):398–410. doi:10.1089/ars.2014.5901.
  • Wallace, J. L., and R. Wang. 2015. Hydrogen sulfide-based therapeutics: Exploiting a unique but ubiquitous gasotransmitter. Nature Reviews. Drug Discovery 14 (5):329–45. doi:10.1038/nrd4433.
  • Wang, H., L. Hu, B. Xu, H. Chen, F. Cai, N. Yang, Q. Wu, K. Uvdal, Z. Hu, and L. Li. 2020. Endoplasmic reticulum-targeted fluorogenic probe based on pyrimidine derivative for visualizing exogenous/endogenous H2S in living cells. Dyes and Pigments 179:108390. doi:10.1016/j.dyepig.2020.108390.
  • Wen, Y., F. J. Huo, and C. X. Yin. 2019. Organelle targetable fluorescent probes for hydrogen peroxide. Chinese Chemical Letters 30 (10):1834–42. doi:10.1016/j.cclet.2019.07.006.
  • Wu, D., L. Y. Chen, Q. L. Xu, X. Q. Chen, and J. Yoon. 2019. Design principles, sensing mechanisms, and applications of highly specific fluorescent probes for HOCl/OCl−. Accounts of Chemical Research 52 (8):2158–68. doi:10.1021/acs.accounts.9b00307.
  • Wu, L. L., A. C. Sedgwick, X. L. Sun, S. D. Bull, X. P. He, and T. D. James. 2019. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Accounts of Chemical Research 52 (9):2582–97. doi:10.1021/acs.accounts.9b00302.
  • Wu, X. F., W. Shi, X. H. Li, and H. M. Ma. 2019. Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes. Accounts of Chemical Research 52 (7):1892–904. doi:10.1021/acs.accounts.9b00214.
  • Xiao, H. B., P. Li, X. Hu, X. Shi, W. Zhang, and B. Tang. 2016. Simultaneous fluorescence imaging of hydrogen peroxide in mitochondria and endoplasmic reticulum during apoptosis. Chemical Science 7 (9):6153–9. doi:10.1039/C6SC01793B.
  • Xiao, H. B., P. Li, and B. Tang. 2021. Recent progresses in fluorescent probes for detection of polarity. Coordination Chemistry Reviews 427:213582. doi:10.1016/j.ccr.2020.213582.
  • Xiao, Y., and X. H. Qian. 2020. Substitution of oxygen with silicon: A big step forward for fluorescent dyes in life science. Coordination Chemistry Reviews 423:213513. doi:10.1016/j.ccr.2020.213513.
  • Xiao, H. B., C. Wu, P. Li, and B. Tang. 2018. Simultaneous fluorescence visualization of endoplasmic reticulum superoxide anion and polarity in myocardial cells and tissue. Analytical Chemistry 90 (10):6081–8. doi:10.1021/acs.analchem.7b05440.
  • Xiao, H. B., W. Zhang, P. Li, W. Zhang, X. Wang, and B. Tang. 2020. Versatile fluorescent probes for imaging the superoxide anion in living cells and In Vivo. Angewandte Chemie (International ed. in English) 59 (11):4216–30. doi:10.1002/ange.201906793.
  • Xiao, H. B., R. Zhang, C. Wu, P. Li, W. Zhang, and B. Tang. 2018. A new pH-sensitive fluorescent probe for visualization of endoplasmic reticulum acidification during stress. Sensors and Actuators B: Chemical 273:1754–61. doi:10.1016/j.snb.2018.07.059.
  • Xie, H., Q. Xu, J. Jia, G. Ao, Y. Sun, L. Hu, N. J. Alkayed, C. Wang, and J. Cheng. 2015. Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochemical and Biophysical Research Communications 458 (3):632–8. doi:10.1016/j.bbrc.2015.02.017.
  • Xu, J. C., Q. Zhou, W. Xu, and L. Cai. 2012. Endoplasmic reticulum stress and diabetic cardiomyopathy. Experimental Diabetes Research 2012:827971. doi:10.1155/2012/827971.
  • Yang, W., G. D. Yang, X. M. Jia, L. Y. Wu, and R. Wang. 2005. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. The Journal of Physiology 569 (2):519–31. doi:10.1113/jphysiol.2005.097642.
  • Yue, D. F., M. L. Wang, F. Deng, W. T. Yin, H. D. Zhao, X. M. Zhao, and Z. C. Xu. 2018. Biomarker-targeted fluorescent probes for breast cancer imaging. Chinese Chemical Letters 29 (5):648–56. doi:10.1016/j.cclet.2018.01.046.
  • Zhang, X., and J. S. Bian. 2014. Hydrogen sulfide: A neuromodulator and neuroprotectant in the central nervous system. ACS Chemical Neuroscience 5 (10):876–83. doi:10.1021/cn500185g.
  • Zhang, H., J. Chen, H. Xiong, Y. Zhang, W. Q. Chen, J. Sheng, and X. Z. Song. 2019. An endoplasmic reticulum-targetable fluorescent probe for highly selective detection of hydrogen sulfide. Org Biomol Chem 17 (6):1436–41. doi:10.1039/C8OB02998A.
  • Zhang, X., Y. Yuan, L. Jiang, J. Zhang, J. Gao, Z. Shen, Y. Zheng, T. Deng, H. Yan, W. Li, et al. 2014. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy. Autophagy 10 (10):1801–13. doi:10.4161/auto.32136.
  • Zhang, Y. R., B. B. Zhang, Z. P. Li, L. B. Wang, X. L. Ren, and Y. Ye. 2019. Endoplasmic reticulum targeted fluorescent probe for the detection of hydrogen sulfide based on a twist-blockage strategy. Organic & Biomolecular Chemistry 17 (38):8778–83. doi:10.1039/C9OB01750J.
  • Zhao, W., J. F. Ndisang, and R. Wang. 2003. Modulation of endogenous production of H2S in rat tissues. Canadian Journal of Physiology and Pharmacology 81 (9):848–53. doi:10.1139/y03-077.
  • Zhou, W., Y. Cao, D. Sui, and C. Lu. 2016. Turn-on luminescent probes for the real-time monitoring of endogenous hydroxyl radicals in living cells. Angewandte Chemie 128 (13):4308–13. doi:10.1002/anie.201511868.
  • Zhou, L., Z. Q. Cheng, N. Li, Y. X. Ge, H. X. Xie, K. K. Zhu, A. Q. Zhou, J. Zhang, K. M. Wang, and C. S. Jiang. 2020. A highly sensitive endoplasmic reticulum-targeting fluorescent probe for the imaging of endogenous H2S in live cells. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 240:118578. doi:10.1016/j.saa.2020.118578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.