148
Views
3
CrossRef citations to date
0
Altmetric
Environmental Analysis

Novel Magnetic Molecularly Imprinted Polymer (MMIP) Based on a Magnesium-Aluminum Layered Double Hydroxide for the Selective Dispersive Micro-Solid-Phase Extraction (SPE) of Fenitrothion with Analysis by Ion Mobility Spectrometry

& ORCID Icon
Pages 2710-2726 | Received 21 Jan 2022, Accepted 18 Apr 2022, Published online: 28 Apr 2022

References

  • Aladaghlo, Z., A. Fakhari, S. I. Alavioon, and M. Dabiri. 2020. A mesoporous nanosorbent composed of silica, graphene, and palladium (II) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry. Mikrochimica Acta 187 (4):209. doi:10.1007/s00604-020.
  • Ayazi, Z., R. Jaafarzadeh, and A. A. Matin. 2017. Montmorillonite/polyaniline/polyamide nanocomposite as a novel stir bar coating for sorptive extraction of organophosphorous pesticides in fruit juices and vegetables applying response surface methodology. Analytical Methods 9 (31):4547–57. doi:10.1039/C7AY00579B.
  • Barati, E., and N. Alizadeh. 2020. Simultaneous determination of sertraline, imipramine and alprazolam in human plasma samples using headspace solid phase microextraction based on a nanostructured polypyrrole fiber coupled to ion mobility spectrometry. Analytical Methods 12 (7):930–7. doi:10.1039/C9AY02001B.
  • Dave, S. R., H. Kaur, and S. K. Menon. 2010. Selective solid-phase extraction of rare earth elements by the chemically modified Amberlite XAD-4 resin with azacrown ether. Reactive and Functional Polymers 70 (9):692–8. doi:10.1016/j.reactfunctpolym.2010.05.011.
  • de Barros, L. A., I. Martins, and S. Rath. 2010. A selective molecularly imprinted polymer-solid phase extraction for the determination of fenitrothion in tomatoes. Analytical and Bioanalytical Chemistry 397 (3):1355–61. doi:10.1007/s00216-010-3629-4.
  • dos Anjos, J. P., and J. B. de Andrade. 2014. Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS. Microchemical Journal 112:119–26. doi:10.1016/j.microc.2013.10.001.
  • Ebrahimi, M., Z. Es'haghi, F. Samadi, F. F. Bamoharram, and M.-S. Hosseini. 2012. Rational design of heteropolyacid-based nanosorbent for hollow fiber solid phase microextraction of organophosphorus residues in hair samples. Journal of Chromatography A 1225:37–44. doi:10.1016/j.chroma.2011.12.077.
  • Elencovan, V., J. Joseph, N. Yahaya, N. Abdul Samad, M. Raoov, V. Lim, and N. N. Mohamad Zain. 2022. Exploring a novel deep eutectic solvents combined with vortex assisted dispersive liquid-liquid microextraction and its toxicity for organophosphorus pesticides analysis from honey and fruit samples. Food Chemistry 368:130835. doi:10.1016/j.foodchem.2021.130835.
  • Fang, Q., S. Ye, H. Yang, K. Yang, J. Zhou, Y. Gao, Q. Lin, X. Tan, and Z. Yang. 2021. Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook. Journal of Hazardous Materials 420:126569. doi:10.1016/j.jhazmat.2021.126569.
  • Farajzadeh, M. A., M. Bahram, M. R. Vardast, and M. Bamorowat. 2011. Dispersive liquid-liquid microextraction for the analysis of three organophosphorus pesticides in real samples by high performance liquid chromatography-ultraviolet detection and its optimization by experimental design. Microchimica Acta 172 (3–4):465–70. doi:10.1007/s00604-010-0451-9.
  • Farajzadeh, M. A., H. Sohrabi, and A. Mohebbi. 2019. Combination of modified QUEChERS extraction method and dispersive liquid–liquid microextraction as an efficient sample preparation approach for extraction and preconcentration of pesticides from fruit and vegetable samples. Food Analytical Methods 12 (2):534–43. doi:10.1007/s12161-018-1384-x.
  • García-Ruiz, C., G. Álvarez-Llamas, Á. Puerta, E. Blanco, A. Sanz-Medel, and M. L. Marina. 2005. Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis: Application to the determination of malathion in water samples after preconcentration by off-line solid-phase extraction. Analytica Chimica Acta 543 (1–2):77–83. doi:10.1016/j.aca.2005.04.027.
  • Grover, A., R. Kaur, I. Mohiuddin, A. K. Malik, J. Singh Aulakh, Y. F. Tsang, and K. H. Kim. 2019. Surfactant-modified Zn/Al-layered double hydroxides for efficient extraction of alkyl phenols from aqueous samples. Environmental Research 177:108605. doi:10.1016/j.envres.2019.108605.
  • Grover, A., I. Mohiuddin, A. Kumar Malik, J. Singh Aulakh, and K. H. Kim. 2019. Zn-Al layered double hydroxides intercalated with surfactant: Synthesis and applications for efficient removal of organic dyes. Journal of Cleaner Production 240:118090. doi:10.1016/j.jclepro.2019.118090.
  • Gure, A., N. Megersa, and N. Retta. 2014. Ion-pair assisted liquid–liquid extraction for selective separation and analysis of multiclass pesticide residues in environmental waters. Analytical Methods 6 (13):4633–42. doi:10.1039/C4AY00285G.
  • Hashemian, Z., A. Mardihallaj, and T. Khayamian. 2010. Analysis of biogenic amines using corona discharge ion mobility spectrometry. Talanta 81 (3):1081–7. doi:10.1016/j.talanta.2010.02.001.
  • Huang, W., A. Zhang, X. Li, J. Tian, L. Yue, L. Cui, R. Zheng, D. Wei, and J. Liu. 2019. Multilayer NiMn layered double hydroxide nanosheets covered porous CO3O4 nanowire arrays with hierarchical structure for high-performance supercapacitors. Journal of Power Sources 440:227123. doi:10.1016/j.jpowsour.2019.227123.
  • Jafari, M. T., and M. Azimi. 2006. Analysis of Sevin, Amitraz, and Metalaxyl pesticides using ion mobility spectrometry. Analytical Letters 39 (9):2061–71. doi:10.1080/00032710600724047.
  • Jia, C., X. Zhu, L. Chen, M. He, P. Yu, and E. Zhao. 2010. Extraction of organophosphorus pesticides in water and juice using ultrasound-assisted emulsification-microextraction. Journal of Separation Science 33 (2):244–50. doi:10.1002/jssc.200900581.
  • Jia, M., Y. Zhu, D. Guo, X. Bi, and X. Hou. 2020. Surface molecularly imprinted polymer based on core-shell Fe3O4@MIL-101(Cr) for selective extraction of phenytoin sodium in plasma. Analytica Chimica Acta 1128:211–20. doi:10.1016/j.aca.2020.06.075.
  • Jian, Y., L. Chen, J. Cheng, X. Huang, L. Yan, and H. Li. 2020. Molecularly imprinted polymers immobilized on graphene oxide film for monolithic fiber solid phase microextraction and ultrasensitive determination of triphenyl phosphate. Analytica Chimica Acta 1133:1–10. doi:10.1016/j.aca.2020.08.003.
  • Jiang, L., T. Huang, S. Feng, and J. Wang. 2016. Zirconium (IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples. Journal of Chromatography. A 1456:49–57. doi:10.1016/j.chroma.2016.06.005.
  • Larki, A. 2017. A novel application of carbon dots for colorimetric determination of fenitrothion insecticide based on the microextraction method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 173:1–5. doi:10.1016/j.saa.2016.08.048.
  • Li, G., A. Wen, J. Liu, D. Wu, and Y. Wu. 2021. Facile extraction and determination of organophosphorus pesticides in vegetables via magnetic functionalized covalent organic framework nanocomposites. Food Chemistry 337:127974. doi:10.1016/j.foodchem.2020.127974.
  • Li, L., X. Zheng, Y. Chi, Y. Wang, X. Sun, Q. Yue, B. Gao, and S. Xu. 2020. Molecularly imprinted carbon nanosheets supported TiO2: Strong selectivity and synergic adsorption-photocatalysis for antibiotics removal. Journal of Hazardous Materials 383:121211. doi:10.1016/j.jhazmat.2019.121211.
  • Li, Z., C. Lei, N. Wang, X. Jiang, Y. Zeng, Z. Fu, L. Zou, L. He, S. Liu, X. Ao, et al. 2018. Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1100–1101:113–21. doi:10.1016/j.jchromb.2018.09.032.
  • Lyu, F., H. Yu, T. Hou, L. Yan, X. Zhang, and B. Du. 2019. Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite. Journal of Colloid and Interface Science 539:184–93. doi:10.1016/j.jcis.2018.12.049.
  • Manouchehri, M., S. Seidi, A. Rouhollahi, H. Noormohammadi, and M. Shanehsaz. 2020. Micro solid phase extraction of parabens from breast milk samples using Mg-Al layered double hydroxide functionalized partially reduced graphene oxide nanocomposite. Food Chemistry 314:126223. doi:10.1016/j.foodchem.2020.126223.
  • Meng, M., X. Meng, Y. Liu, Z. Liu, J. Han, Y. Wang, M. Luo, R. Chen, L. Ni, and Y. Yan. 2014. An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition-fragmentation chain transfer polymerization for selective removal of Ce(III) from aqueous solution. Journal of Hazardous Materials 278:134–43. doi:10.1016/j.jhazmat.2014.06.002.
  • Mohsenzadeh, M. S., A. Mohammadinejad, and S. A. Mohajeri. 2018. Simple and selective analysis of different antibiotics in milk using molecularly imprinted polymers: A review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (10):1959–74. doi:10.1080/19440049.2018.1508889.
  • Mu, R., X. He, X. Gao, J. Jia, and J. Li. 2018. Determination of malathion using corona discharge – ion mobility spectrometry with solid-phase microextraction. Analytical Letters 51 (6):807–19. doi:10.1080/00032719.2017.1362645.
  • Pelle, F. D., M. C. Di Crescenzo, M. Sergi, C. Montesano, F. D. Ottavio, R. Scarpone, G. Scortichini, and D. Compagnone. 2016. Micro-solid-phase extraction (µ-SPE) of organophosphorous pesticides from wheat followed by LC-MS/MS determination. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 33 (2):291–9. doi:10.1080/19440049.2015.1123818.
  • Qi, P., J. Wang, X. Wang, X. Wang, Z. Wang, H. Xu, S. Di, Q. Wang, and X. Wang. 2018. Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS2)-Au and zirconia films. Electrochimica Acta 292:667–75. doi:10.1016/j.electacta.2018.09.187.
  • Rodrigues, F. M., P. R. R. Mesquita, L. S. de Oliveira, F. S. de Oliveira, A. Menezes Filho, P. A. de P. Pereira, and J. B. de Andrade. 2011. Development of a headspace solid-phase microextraction/gas chromatography–mass spectrometry method for determination of organophosphorus pesticide residues in cow milk. Microchemical Journal 98 (1):56–61. doi:10.1016/j.microc.2010.11.00.
  • Sánchez-Ortega, A., M. C. Sampedro, N. Unceta, M. A. Goicolea, and R. J. Barrio. 2005. Solid-phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples. Journal of Chromatography A 1094 (1–2):70–6. doi:10.1016/j.chroma.2005.07.089.
  • Shah, J., M. Rasul Jan, M. Zeeshan, and M. Iqbal. 2016. Solid phase extraction and removal of 2,4-dichlorophenol from aqueous samples using magnetic graphene nanocomposite. Separation Science and Technology 51 (9):1–9. doi: 10.1080/01496395.2016.1165700. doi:10.1080/01496395.2016.1165700.
  • Sheibani, A., M. Tabrizchi, and H. S. Ghaziaskar. 2008. Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta 75 (1):233–8. doi:10.1016/j.talanta.2007.11.006.
  • Soysal, M. 2019. Voltammetric determination of fenitrothion based on pencil graphite electrode modified with poly(Purpald®). Chemical Papers 73 (7):1785–94. doi:10.1007/s11696-019-00731-y.
  • Ulusoy, H. İ., K. Köseoğlu, A. Kabir, S. Ulusoy, and M. Locatelli. 2020. Fabric phase sorptive extraction followed by HPLC-PDA detection for the monitoring of pirimicarb and fenitrothion pesticide residues. Mikrochimica Acta 187 (6):337. doi:10.1007/s00604-020-04306-7.
  • Wang, P., M. Luo, D. Liu, J. Zhan, X. Liu, F. Wang, Z. Zhou, and P. Wang. 2018. Application of a magnetic graphene nanocomposite for organophosphorus pesticide extraction in environmental water samples. Journal of Chromatography. A 1535:9–16. doi:10.1016/j.chroma.2018.01.003.
  • Yamaguchi, S., R. Asada, S. Kishi, R. Sekioka, N. Kitagawa, K. Tokita, S. Yamamoto, and Y. Seto. 2010. Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents. Forensic Toxicology 28 (2):84–95. doi:10.1007/s11419-010-0092-z.
  • Yang, J., W. Feng, K. Liang, C. Chen, and C. Cai. 2020. A novel fluorescence molecularly imprinted sensor for Japanese encephalitis virus detection based on metal organic frameworks and passivation-enhanced selectivity. Talanta 212:120744. doi:10.1016/j.talanta.2020.120744.
  • Yuan, J., S. Xu, H. Zeng, X. Cao, A. Dan Pan, G.-F. Xiao, and P.-X. Ding. 2018. Hydrogen peroxide biosensor based on chitosan/2D layered double hydroxide composite for the determination of H2O2. Bioelectrochemistry 123:94–102. doi:10.1016/j.bioelechem.2018.04.009.
  • Yuan, X., Y. Yuan, X. Gao, Z. Xiong, and L. Zhao. 2020. Magnetic dummy-template molecularly imprinted polymers based on multi-walled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals. Food Chemistry 333:127540–23. doi:10.1016/j.foodchem.2020.127540.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.