230
Views
4
CrossRef citations to date
0
Altmetric
Environmental Analysis

Electrochemical Determination of 2,4,6-Trinitrotoluene by Linear Sweep Voltammetry Using a Gold Nanoparticle/Mesoporous Graphitic Carbon Nitride Modified Glassy Carbon Electrode

, , , , &
Pages 2683-2696 | Received 09 Mar 2022, Accepted 18 Apr 2022, Published online: 28 Apr 2022

References

  • Ahmad, K., P. Kumar, and S. M. Mobin. 2020. A highly sensitive and selective hydroquinone sensor based on a newly designed N-rGO/SrZrO3 composite. Nanoscale Advances 2 (1):502–11. doi:10.1039/C9NA00573K.
  • Cai, Z., F. Li, P. Wu, L. Ji, H. Zhang, C. Cai, and D. F. Gervasio. 2015. Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Analytical Chemistry 87 (23):11803–11. doi:10.1021/acs.analchem.5b03201.
  • Chai, B., T. Peng, J. Mao, K. Li, and L. Zan. 2012. Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Physical Chemistry Chemical Physics: PCCP 14 (48):16745–52. doi:10.1039/c2cp42484c.
  • Deng, Q.-F., L. Liu, X.-Z. Lin, G. Du, Y. Liu, and Z.-Y. Yuan. 2012. Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal 203:63–70. doi:10.1016/j.cej.2012.06.124.
  • Di, Y., X. C. Wang, A. Thomas, and M. Antonietti. 2010. Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light. ChemCatChem.2 (7):834–8. doi:10.1002/cctc.201000057.
  • Dong, F., L. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee. 2011. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. Journal of Materials Chemistry 21 (39):15171. doi:10.1039/c1jm12844b.
  • Fernandez, E., L. Vidal, J. Iniesta, J. P. Metters, C. E. Banks, and A. Canals. 2014. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene. Analytical and Bioanalytical Chemistry 406 (8):2197–204. doi:10.1007/s00216-013-7415-y.
  • Ferreira, V. C., A. F. Silva, and L. M. Abrantes. 2010. Electrochemical and morphological characterization of new architectures containing self-assembled monolayers and Au-NPs. The Journal of Physical Chemistry C 114 (17):7710–6. doi:10.1021/jp912123m.
  • Ghanbari, K., and A. Hajian. 2017. Electrochemical characterization of Au/ZnO/PPy/RGO nanocomposite and its application for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Journal of Electroanalytical Chemistry 801:466–79. doi:10.1016/j.jelechem.2017.07.024.
  • Haslag, C. S., and M. M. Richter. 2012. Electrogenerated chemiluminescence quenching of Ru(bpy)32+ (bpy = 2,2 '-bipyridine) in the presence of acetaminophen, salicylic acid and their metabolites. Journal of Luminescence 132 (3):636–40. doi:10.1016/j.jlumin.2011.09.059.
  • Hosseini, M. G., M. M. Momeni, and M. Faraji. 2011. Fabrication of Au-nanoparticle/TiO2-nanotubes electrodes using electrochemical methods and their application for electrocatalytic oxidation of hydroquinone. Electroanalysis 23 (7):1654–62. doi:10.1002/elan.201000656.
  • Hou, T., P. P. Gai, M. M. Song, S. H. Zhang, and F. Li. 2016. Synthesis of a three-layered SiO2@Au nanoparticle@polyaniline nanocomposite and its application in simultaneous electrochemical detection of uric acid and ascorbic acid. Journal of Materials Chemistry. B 4 (13):2314–21. doi:10.1039/c5tb02765a.
  • Huang, Y., J. Tan, L. Cui, Z. Zhou, S. Zhou, Z. Zhang, R. Zheng, Y. Xue, M. Zhang, S. Li, et al. 2018. Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosensors & Bioelectronics 102:560–7. doi:10.1016/j.bios.2017.11.037.
  • Jiang, J., J. Yu, and S. Cao. 2016. Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light. Journal of Colloid and Interface Science 461:56–63. doi:10.1016/j.jcis.2015.08.076.
  • Karthik, R., N. Karikalan, S.-M. Chen, P. Gnanaprakasam, and C. Karuppiah. 2017. Voltammetric determination of the anti-cancer drug nilutamide using a screen-printed carbon electrode modified with a composite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide. Microchimica Acta 184 (2):507–14. doi:10.1007/s00604-016-2037-7.
  • Laviron, E., and L. Roullier. 1980. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules: Applications to modified electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 115 (1):65–74. doi:10.1016/S0022-0728(80)80496-7.
  • Li, J., J. Yang, Z. Yang, Y. Li, S. Yu, Q. Xu, and X. Hu. 2012. Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Analytical Methods 4 (6):1725. doi:10.1039/c2ay05926f.
  • Li, R., T. Yang, Z. Li, Z. Gu, G. Wang, and J. Liu. 2017. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine. Analytica Chimica Acta 954:43–51. doi:10.1016/j.aca.2016.12.031.
  • Liu, J., H. Yu, and L. Wang. 2020. Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal-organic framework nanosheets. Applied Catalysis A: General 599:117605. doi:10.1016/j.apcata.2020.117605.
  • Liu, J., T. Zhang, Z. Wang, G. Dawson, and W. Chen. 2011. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry 21 (38):14398. doi:10.1039/c1jm12620b.
  • Ma, H., L. Yao, P. Li, O. Ablikim, Y. Cheng, and M. Zhang. 2014. Highly sensitive and selective fluorometric/electrochemical dual-channel sensors for TNT and DNT explosives. Chemistry (Weinheim an der Bergstrasse, Germany) 20 (37):11655–8. doi:10.1002/chem.201402206.
  • Mo, R., X. Wang, Q. Yuan, X. Yan, T. Su, Y. Feng, L. Lv, C. Zhou, P. Hong, S. Sun, et al. 2018. Electrochemical determination of nitrite by Au nanoparticle/graphene-chitosan modified electrode. Sensors 18 (7):1986. doi:10.3390/s18071986.
  • Parajuli, S., X. Jing, and W. Miao. 2015. Electrogenerated chemiluminescence (ECL) quenching of the Ru(bpy)32+/TPrA system by the explosive TNT. Electrochimica Acta 180:196–201. doi:10.1016/j.electacta.2015.08.107.
  • Pittman, T. L., B. Thomson, and W. Miao. 2009. Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence. Analytica Chimica Acta 632 (2):197–202. doi:10.1016/j.aca.2008.11.032.
  • Rao, D., J. Zhang, and J. Zheng. 2016. A novel electrochemical sensor based on gold nanorods and Nafion-modified GCE for the electrocatalytic oxidation of nitrite. Journal of the Iranian Chemical Society 13 (12):2257–66. doi:10.1007/s13738-016-0944-5.
  • Shi, G., Y. Qu, Y. Zhai, Y. Liu, Z. Sun, J. Yang, and L. Jin. 2007. {MSU/PDDA}n LBL assembled modified sensor for electrochemical detection of ultratrace explosive nitroaromatic compounds. Electrochemistry Communications 9 (7):1719–24. doi:10.1016/j.elecom.2007.03.019.
  • Shi, Y., J. Li, Y. Sun, D. Wan, H. Wan, and Y. Wang. 2022. FeOOH coupling and nitrogen vacancies functionalized g-C3N4 heterojunction for efficient degradation of antibiotics: Performance evaluation, active species evolution and mechanism insight. Journal of Alloys and Compounds 903:163898. doi:10.1016/j.jallcom.2022.163898.
  • Singh, S., V. K. Meena, B. Mizaikoff, S. P. Singh, and C. R. Suri. 2016. Electrochemical sensing of nitro-aromatic explosive compounds using silver nanoparticles modified electrochips. Analytical Methods 8 (39):7158–69. doi:10.1039/C6AY01945E.
  • Snels, M., T. Venezia, and L. Belfiore. 2010. Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy. Chemical Physics Letters 489 (1-3):134–40. doi:10.1016/j.cplett.2010.02.065.
  • Thuy, P. T., V. C. Minh, V. Q. Mai, N. T. Tuan, P. Van Tuan, H. B. Cuong, and N. X. Sang. 2021. Local surface plasmonic resonance, surface-enhanced raman scattering, photoluminescence, and photocatalytic activity of hydrothermal titanate nanotubes coated with Ag nanoparticles. Journal of Nanomaterials 2021:1–9. doi:10.1155/2021/3806691.
  • Tsukamoto, D., Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, and T. Hirai. 2012. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. Journal of the American Chemical Society 134 (14):6309–15. doi:10.1021/ja2120647.
  • Wang, C., J. Du, H. Wang, C. Zou, F. Jiang, P. Yang, and Y. Du. 2014. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical 204:302–9. doi:10.1016/j.snb.2014.07.077.
  • Wang, P., Z.-G. Liu, X. Chen, F.-L. Meng, J.-H. Liu, and X.-J. Huang. 2013. UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties. Journal of Materials Chemistry A 1 (32):9189. doi:10.1039/c3ta11155e.
  • Wang, Z.-W., H.-J. Liu, C.-Y. Li, X. Chen, R. Weerasooriya, J. Wei, J. Lv, P. Lv, and Y.-C. Wu. 2020. Mesoporous g-C3N4/β-CD nanocomposites modified glassy carbon electrode for electrochemical determination of 2,4,6-trinitrotoluene. Talanta 208:120410.
  • Xi, J., and B. Zhang. 2018. A non-reductive electrochemical sensor for ultrasensitive detection of pM-level TNT. Analytical Methods 10 (38):4639–43. doi:10.1039/C8AY01522H.
  • Xu, M., L. Han, and S. Dong. 2013. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Applied Materials & Interfaces 5 (23):12533–40. doi:10.1021/am4038307.
  • Yu, X., Z. Mai, Y. Xiao, and X. Zou. 2008. Electrochemical behavior and determination of L-tyrosine at single-walled carbon nanotubes modified glassy carbon electrode. Electroanalysis 20 (11):1246–51. doi:10.1002/elan.200704179.
  • Zhang, H.-X., A.-M. Cao, J.-S. Hu, L.-J. Wan, and S.-T. Lee. 2006. Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Analytical Chemistry 78 (6):1967–71. doi:10.1021/ac051826s.
  • Zhang, K., H. Zhou, Q. Mei, S. Wang, G. Guan, R. Liu, J. Zhang, and Z. Zhang. 2011. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. Journal of the American Chemical Society 133 (22):8424–7. doi:10.1021/ja2015873.
  • Zhang, W., J. Chang, J. Chen, F. Xu, F. Wang, K. Jiang, and Z. Gao. 2012. Graphene–Au composite sensor for electrochemical detection of para-nitrophenol. Research on Chemical Intermediates 38 (9):2443–55. doi:10.1007/s11164-012-0560-7.
  • Zhou, D., M. Wang, J. Dong, and S. Ai. 2016. A novel electrochemical immunosensor based on mesoporous graphitic carbon nitride for detection of subgroup J of avian leukosis viruses. Electrochimica Acta 205:95–101. doi:10.1016/j.electacta.2016.04.101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.