129
Views
0
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Enhanced Sensitivity for the Determination of Lithium by Miniaturized Liquid Cathode Glow Discharge (LCGD) Atomic Emission Spectrometry (AES) with the Addition of Surfactants

, , , &
Pages 2789-2802 | Received 09 Jan 2022, Accepted 28 Apr 2022, Published online: 08 May 2022

References

  • Cheng, J., Q. Li, M. Y. Zhao, and Z. Wang. 2019. Ultratrace Pb determination in seawater by solution-cathode glow discharge-atomic emission spectrometry coupled with hydride generation. Analytica Chimica Acta 1077:107–15. doi:10.1016/j.aca.2019.06.003.
  • Cserfalvi, T., P. Mezei, and P. Apai. 1993. Emission studies on a glow discharge in atmospheric pressure air using water as a cathode. Journal of Physics D: Applied Physics 26 (12):2184–8. doi:10.1088/0022-3727/26/12/015.
  • Dai, L. L., L. Wigman, and K. Zhang. 2015. Sensitive and direct determination of lithium by mixed-mode chromatography and charged aerosol detection. Journal of Chromatography. A 1408:87–92. doi:10.1016/j.chroma.2015.06.063.
  • Davis, W. C., and R. K. Marcus. 2001. An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Journal of Analytical Atomic Spectrometry 16 (9):931–7. doi:10.1039/b103437p.
  • Dinelli, E., A. Lima, S. Albanese, M. Birke, D. Cicchella, L. Giaccio, P. Valera, and B. D. Vivo. 2012. Major and trace elements in tap water from Italy. Journal of Geochemical Exploration 112:54–75. doi:10.1016/j.gexplo.2011.07.009.
  • Dong, J. H., C. Yang, D. He, H. T. Zheng, S. H. Hu, and Z. L. Zhu. 2020. Performance evaluation of atmospheric pressure glow discharge-optical emission spectrometry for the determination of sodium, lithium, calcium and magnesium using membrane desolvation. Atomic Spectroscopy 41 (2):57–−63. doi:10.46770/AS.2020.02.002.
  • Doroski, T. A., and M. R. Webb. 2013. Signal enhancement in solution-cathode glow discharge optical emission spectrometry via low molecular weight organic compounds. Spectrochimica Acta Part B: Atomic Spectroscopy 88:40–5. doi:10.1016/j.sab.2013.07.014.
  • Gourcerol, B., E. Gloaguen, J. Melleton, J. Tuduri, and X. Galiegue. 2019. Re-assessing the European lithium resource potential-a review of hard-rock resources and metallogeny. Ore Geology Reviews 109:494–519. doi:10.1016/j.oregeorev.2019.04.015.
  • Gręda, K., P. Jamroz, and P. Pohl. 2013a. Effect of the addition of non-ionic surfactants on the emission characteristic of direct current atmospheric pressure glow discharge generated in contact with a flowing liquid cathode. Journal of Analytical Atomic Spectrometry 28 (1):134–41. doi:10.1039/C2JA30275F.
  • Gręda, K., P. Jamróz, and P. Pohl. 2013b. The improvement of the analytical performance of direct current atmospheric pressure glow discharge generated in contact with the small-sized liquid cathode after the addition of non-ionic surfactants to electrolyte solutions. Talanta 108:74–82. doi:10.1016/j.talanta.2013.02.049.
  • Greda, K., P. Jamroz, and P. Pohl. 2014. Coupling of cold vapor generation with an atmospheric pressure glow microdischarge sustained between a miniature flow helium jet and a flowing liquid cathode for the determination of mercury by optical emission spectrometry. Journal of Analytical Atomic Spectrometry 29 (5):893–902. doi:10.1039/C3JA50395J.
  • Greda, K., P. Jamroz, A. Dzimitrowicz, and P. Pohl. 2015. Direct elemental analysis of honeys by atmospheric pressure glow discharge in contact with a flowing liquid cathode. Journal of Analytical Atomic Spectrometry 30 (1):154–61. doi:10.1039/C4JA00261J.
  • Greda, K., K. Swiderski, P. Jamroz, and P. Pohl. 2016. Flowing liquid anode atmospheric pressure glow discharge as an excitation source for optical emission spectrometry with the improved detectability of Ag, Cd, Hg, Pb, Tl, and Zn. Analytical Chemistry 88 (17):8812–20. doi:10.1021/acs.analchem.6b02250.
  • Greda, K., S. Burhenn, P. Pohl, and J. Franzke. 2019. Enhancement of emission from indium in flowing liquid anode atmospheric pressure glow discharge using organic media. Talanta 204:304–9. doi:10.1016/j.talanta.2019.06.015.
  • He, Q., Z. L. Zhu, and S. H. Hu. 2014. Flowing and nonflowing liquid electrode discharge microplasma for metal ion detection by optical emission spectrometry. Applied Spectroscopy Reviews 49 (3):249–69. doi:10.1080/05704928.2013.820195.
  • Hill, S. J. A. Fisher, and M. Foulkes. 2007. In inductively coupled plasma spectrometry and its applications. 2nd ed, 61–97. Oxford: Blackwell Publishing Ltd..
  • Jamróz, P., P. Pohl, and W. Żyrnicki. 2012. An analytical performance of atmospheric pressure glow discharge generated in contact with flowing small size liquid cathode. Journal of Analytical Atomic Spectrometry 27 (6):1032–7. doi:10.1039/c2ja30017f.
  • Krähling, T., S. Müller, C. Meyer, A. K. Stark, and J. Franzke. 2011. Liquid electrode dielectric barrier discharge for the analysis of solved metals. Journal of Analytical Atomic Spectrometry 26 (10):1974–8. doi:10.1039/c1ja10138b.
  • Leng, A. Q., Y. Lin, Y. F. Tian, L. Wu, X. M. Jiang, X. D. Hou, and C. B. Zheng. 2017. Pump and valve-free flow injection capillary liquid electrode discharge optical emission spectrometry coupled to a droplet array platform. Analytical Chemistry 89 (1):703–10. doi:10.1021/acs.analchem.6b03185.
  • Li, M. T., K. Li, L. He, X. L. Zeng, X. Wu, X. D. Hou, and X. M. Jiang. 2019. Point discharge microplasma optical emission spectrometer: Hollow electrode for efficient volatile hydride/mercury sample introduction and 3D-printing for compact instrumentation. Analytical Chemistry 91 (11):7001–6. doi:10.1021/acs.analchem.9b00045.
  • Li, X. W., Y. H. Chao, L. L. Chen, W. Chen, J. Luo, C. Wang, P. W. Wu, H. M. Li, and W. S. Zhu. 2020. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chemical Engineering Journal 392:123731. doi:10.1016/j.cej.2019.123731.
  • Liu, Y. J., B. Sun, and L. Wang. 2014. Determination of lithium ion by liquid-phase diaphragm glow discharge-atomic emission spectroscopy. Analytical Letters 47 (8):1409–20. doi:10.1080/00032719.2013.869825.
  • Lu, Q. F., H. Luo, J. Yu, Y. J. Kang, Z. H. Lu, J. L. Li, and W. Yang. 2020. Evaluation of a sampling system coupled to liquid cathode glow discharge for the determination of rubidium, cesium and strontium in water samples. Microchemical Journal 158:105246. doi:10.1016/j.microc.2020.105246.
  • Manjusha, R., M. A. Reddy, R. Shekhar, and S. J. Kumar. 2014. Determination of cadmium in Zircaloys by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES). Analytical Methods 6 (24):9850–6. doi:10.1039/C4AY01242A.
  • Marcus, R. K., and W. C. Davis. 2001. An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Analytical Chemistry 73 (13):2903–10. doi:10.1021/ac010158h.
  • Pohl, P., P. Jamróz, K. Swiderski, A. Dzimitrowicz, and A. Lesniewicz. 2017. Critical evaluation of recent achievements in low power glow discharge generated at atmospheric pressure between a flowing liquid cathode and a metallic anode for element analysis by optical emission spectrometry. TrAC Trends in Analytical Chemistry 88:119–33. doi:10.1016/j.trac.2017.01.002.
  • Pohl, P., P. Jamróz, K. Greda, M. Gorska, A. Dzimitrowicz, M. Welna, and A. Szymczycha-Madeja. 2021. Five years of innovations in development of glow discharges generated in contact with liquids for spectrochemical elemental analysis by optical emission spectrometry. Analytica Chimica Acta 1169:338399. doi:10.1016/j.aca.2021.338399.
  • Schwartz, A. J., S. J. Ray, and G. M. Hieftje. 2016. Evaluation of interference filters for spectral discrimination in solution-cathode glow discharge optical emission spectrometry. Journal of Analytical Atomic Spectrometry 31 (6):1278–86. doi:10.1039/C6JA00127K.
  • Shekhar, R. 2012. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium. Talanta 93:32–6. doi:10.1016/j.talanta.2012.02.004.
  • Webb, M. R., F. J. Andrade, G. Gamez, R. McCrindle, and G. M. Hieftje. 2005. Spectroscopic and electrical studies of a solution-cathode glow discharge. Journal of Analytical Atomic Spectrometry 20 (11):1218–25. doi:10.1039/b503961d.
  • Webb, M. R., F. J. Andrade, and G. M. Hieftje. 2007. Compact glow discharge for the elemental analysis of aqueous samples. Analytical Chemistry 79 (20):7899–905. doi:10.1021/ac070789x.
  • Webb, M. R., and G. M. Hieftje. 2009. Spectrochemical analysis by using discharge devices with solution electrodes. Analytical Chemistry 81 (3):862–7. doi:10.1021/ac801561t.
  • Wang, Y., H. T. Liu, J. H. Fan, X. T. Liu, Y. F. Hu, Y. L. Hu, Z. Y. Zhou, and Z. Q. Ren. 2019. Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropoly acid ionic liquid. ACS Sustainable Chemistry & Engineering 7 (3):3062–72. doi:10.1021/acssuschemeng.8b04694.
  • Wang, Z., A. J. Schwartz, S. J. Ray, and G. M. Hieftje. 2013. Determination of trace sodium, lithium, magnesium, and potassium impurities in colloidal silica by slurry introduction into an atmospheric-pressure solution-cathode glow discharge and atomic emission spectrometry. Journal of Analytical Atomic Spectrometry 28 (2):234–40. doi:10.1039/C2JA30253E.
  • Wang, Z., R. Gai, L. Zhou, and Z. Zhang. 2014. Design modification of a solution-cathode glow discharge-atomic emission spectrometer for the determination of trace metals in titanium dioxide. Journal of Analytical Atomic Spectrometry 29 (11):2042–9. doi:10.1039/C4JA00173G.
  • Xiao, Q., Z. L. Zhu, H. T. Zheng, H. He, C. Huang, and S. H. Hu. 2013. Significant sensitivity improvement of alternating current driven-liquid discharge by using formic acid medium for optical determination of elements. Talanta 106:144–9. doi:10.1016/j.talanta.2012.12.013.
  • Yang, C., L. Wang, Z. L. Zhu, L. L. Jin, H. T. Zheng, N. S. Belshaw, and S. H. Hu. 2016. Evaluation of flow injection-solution cathode glow discharge-atomic emission spectrometry for the determination of major elements in brines. Talanta 155:314–20. doi:10.1016/j.talanta.2016.04.060.
  • Yu, J., S. X. Yang, Q. F. Lu, D. X. Sun, J. D. Zheng, X. M. Zhang, X. Wang, and W. Yang. 2017b. Evaluation of liquid cathode glow discharge-atomic emission spectrometry for determination of copper and lead in ores samples. Talanta 164:216–21. doi:10.1016/j.talanta.2016.11.015.
  • Yu, J., X. M. Zhang, Q. F. Lu, X. Wang, D. X. Sun, Y. Q. Wang, and W. Yang. 2017. Determination of calcium and zinc in gluconates oral solution and blood samples by liquid cathode glow discharge-atomic emission spectrometry. Talanta 175:150–7. doi:10.1016/j.talanta.2017.07.040.
  • Yu, J., S. Zhu, Q. Lu, Z. Zhang, D. Sun, X. Zhang, X. Wang, and W. Yang. 2018. Liquid cathode glow discharge as a microplasma excitation source for atomic emission spectrometry for the determination of trace heavy metals in ore samples. Analytical Letters 51 (13):2128–40. doi:10.1080/00032719.2017.1406492.
  • Yu, J., L. Yin, Q. F. Lu, F. F. Feng, Y. J. Kang, and H. Luo. 2020. Highly sensitive determination of mercury by improved liquid cathode glow discharge with the addition of chemical modifiers. Analytica Chimica Acta 1131:25–34. doi:10.1016/j.aca.2020.07.050.
  • Yu, J., Y. J. Kang, Q. F. Lu, H. Luo, Z. H. Lu, L. J. Cui, and J. L. Li. 2020. Improvement of analytical performance of liquid cathode glow discharge for the determination of bismuth using formic acid as a matrix modifier. Microchemical Journal 159:105507. doi:10.1016/j.microc.2020.105507.
  • Yu, Y. L., Z. Du, M. L. Chen, and J. H. Wang. 2008. Atmospheric-pressure dielectric-barrier discharge as a radiation source for optical emission spectrometry. Angewandte Chemie (International ed. in English) 47 (41):7909–12. doi:10.1002/anie.200802681.
  • Zhang, Z., Z. Wang, Q. Li, H. Zou, and Y. Shi. 2014. Determination of trace heavy metals in environmental and biological samples by solution cathode glow discharge-atomic emission spectrometry and addition of ionic surfactants for improved sensitivity. Talanta 119:613–9. doi:10.1016/j.talanta.2013.11.010.
  • Zheng, P. C., Y. Y. Chen, J. M. Wang, and S. W. Xue. 2016. A pulsed atmospheric-pressure discharge generated in contact with flowing electrolyte solutions for metal element analysis by optical emission spectrometry. Journal of Analytical Atomic Spectrometry 31 (10):2037–44. doi:10.1039/C6JA00213G.
  • Zheng, P. C., Y. M. Gong, J. M. Wang, and X. B. Zeng. 2017. Elemental analysis of mineral water by solution-cathode glow discharge–atomic emission spectrometry. Analytical Letters 50 (9):1512–20. doi:10.1080/00032719.2016.1233243.
  • Zheng, P. C., W. Q. Li, J. M. Wang, N. S. Wang, C. Zhong, Y. J. Luo, X. F. Wang, X. F. Mao, and C. H. Lai. 2020. Analytical performance of hollow anode-solution cathode glow discharge-atomic emission spectrometry. Analytical Letters 53 (5):693–704. doi:10.1080/00032719.2019.1668007.
  • Zu, W. C., Y. Yang, Y. Wang, X. T. Yang, C. Liu, and M. Ren. 2018. Rapid determination of indium in water samples using a portable solution cathode glow discharge-atomic emission spectrometer. Microchemical Journal 137:266–71. doi:10.1016/j.microc.2017.11.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.