131
Views
3
CrossRef citations to date
0
Altmetric
Metal Speciation

Syringe Membrane Micro-Solid-Phase Extraction (SPE) with Flexible Titanium(IV) Oxide@Silica Nanofiber Membrane for the Speciation of Te(IV) and Te(VI) with Graphite Furnace Atomic Absorption Spectrometry (GFAAS)

, , , &
Pages 69-83 | Received 13 Mar 2022, Accepted 05 Jun 2022, Published online: 07 Jul 2022

References

  • Belzile, N., and Y. Chen. 2015. Tellurium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry 63:83–92. doi:10.1016/j.apgeochem.2015.07.002.
  • Biswas, A., H. Park, and W. M. Sigmund. 2012. Flexible ceramic nanofibermat electrospun from TiO2-SiO2 aqueous sol. Ceramics International 38 (1):883–6. doi:10.1016/j.ceramint.2011.07.06.
  • Chen, S., Y. Liu, C. Wang, J. Yan, and D. Lu. 2022. Speciation of As(III) and As(V) in food by magnetic dispersive microsolid phase extraction with dispersive liquid-liquid microextraction with graphite furnace atomic absorption spectrometry (GFAAS) detection. Analytical Letters 55 (2):269–80. doi:10.1080/00032719.2021.1925290.
  • Duan, N., Q. Li, X. Meng, Z. Wang, and S. Wu. 2021. Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chemistry 364:130441. doi:10.1016/j.foodchem.2021.130441.
  • Fathirad, F., D. Afzali, A. Mostafavi, and M. Ghanbarian. 2012. Ultrasound-assisted emulsification solidified floating organic drops microextraction of ultra trace amount of Te (IV) prior to graphite furnace atomic absorption spectrometry determination . Talanta 88:759–64. doi:10.1016/j.talanta.2011.11.078.
  • Garcia-Figueroa, A., I. Lavilla, and C. Bendicho. 2019. Speciation of CdTe quantum dots and Te(IV) following oxidative degradation induced by iodide and headspace single-drop microextraction combined with graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 158:105631. doi:10.1016/j.sab.2019.06.001.
  • Garcia-Valverde, M. T., R. Lucena, S. Cardenas, and M. Valcarcel. 2014. Titanium-dioxide nanotubes as sorbents in (micro)extraction techniques. TrAC Trends in Analytical Chemistry 62:37–45. doi:10.1016/j.trac.2014.06.015.
  • Ghasemi, A., M. R. Jamali, and Z. Es’haghi. 2021. Ultrasound assisted ferrofluid dispersive liquid phase microextraction coupled with flame atomic absorption spectroscopy for the determination of cobalt in environmental samples. Analytical Letters 54 (3):378–93. doi:10.1080/00032719.2020.1765790.
  • Ghasemi, E., N. M. Najafi, F. Raofie, and A. Ghassempour. 2010. Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination . Journal of Hazardous Materials 181 (1-3):491–6. doi:10.1016/j.jhazmat.2010.05.040.
  • Ghasemi, E., N. M. Najafi, S. Seidi, F. Raofie, and A. Ghassempour. 2009. Speciation and determination of trace inorganic tellurium in environmental samples by electrodeposition-electrothermal atomic absorption spectroscopy. Journal of Analytical Atomic Spectrometry 24 (10):1446–51. doi:10.1039/b903162f.
  • Ghorbani, M., M. Aghamohammadhassan, M. Chamsaz, H. Akhlaghi, and T. Pedramrad. 2019. Dispersive solid phase microextraction. TrAC Trends in Analytical Chemistry 118:793–809. doi:10.1016/j.trac.2019.07.01.
  • Hashemi, B., and S. Rezania. 2019. Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: A review. Microchimica Acta 186 (8):3668–3672. doi:10.1007/s00604-019-3668-2.
  • He, M., Z. Chen, C. Xu, B. Chen, and B. Hu. 2021. Magnetic nanomaterials as sorbents for trace elements analysis in environmental and biological samples. Talanta 230:122306. doi:10.1016/j.talanta.2021.122306.
  • He, M., S. Su, B. Chen, and B. Hu. 2020. Simultaneous speciation of inorganic selenium and tellurium in environmental water samples by polyaniline functionalized magnetic solid phase extraction coupled with ICP-MS detection. Talanta 207:120314. doi:10.1016/j.talanta.2019.120314.
  • Huang, C., and B. Hu. 2008. Speciation of inorganic tellurium from seawater by ICP-MS following magnetic SPE separation and preconcentration. Journal of Separation Science 31 (4):760–7. doi:10.1002/jssc.200700405.
  • Khan, W. A., M. B. Arain, and M. Soylak. 2020. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food and Chemical Toxicology 145:111704. doi:10.1016/j.fct.2020.111704.
  • Kumar, A. R., and P. Riyazuddin. 2007. Non-chromatographic hydride generation atomic spectrometric techniques for the speciation analysis of arsenic, antimony, selenium, and tellurium in water samples-a review. International Journal of Environmental Analytical Chemistry 87 (7):469–500. doi:10.1080/03067310601170415.
  • Li, T., Z. Zhang, and Z. Han. 2021. Research progress in polymer-based metal-organic framework nanofibrous membranes based on electrospinning. Journal of Inorganic Materials 36 (6):592–600. doi:10.15541/jim20200266.
  • Lin, T., M. Wu, Y. Lin, C. Tsao, Y. Chang, K. Chiang, Y. Huang, and Y. Lu. 2021. Solar-triggered photothermal therapy for tumor ablation by Ag nanoparticles self-precipitated on structural titanium oxide nanofibers. Applied Surface Science 552:149428. doi:10.1016/j.apsusc.2021.149428.
  • Liu, Y., M. He, B. Chen, and B. Hu. 2015. Simultaneous speciation of inorganic arsenic, selenium and tellurium in environmental water samples by dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry. Talanta 142:213–20. doi:10.1016/j.talanta.2015.04.050.
  • Liu, G., R. Yang, and M. Li. 2010. Liquid adsorption of basic dye using silica aerogels with different textural properties. Journal of Non-Crystalline Solids 356 (4–5):250–7. doi:10.1016/j.jnoncrysol.2009.11.019.
  • Llaver, M., F. A. Casado-Carmona, R. Lucena, C. Soledad, and R. G. Wuilloud. 2019. Ultra-trace tellurium preconcentration and speciation analysis in environmental samples with a novel magnetic polymeric ionic liquid nanocomposite and magnetic dispersive micro-solid phase extraction with flow-injection hydride generation atomic fluorescence spectrometry detection. Spectrochimica Acta Part B: Atomic Spectroscopy 162:105705. doi:10.1016/j.sab.2019.105705.
  • Mahmoudiani, F., S. A. Milani, F. Hormozi, and A. Yadollahi. 2022. Separation of selenium (IV) and tellurium (IV) from nitric acid medium by solvent extraction using CYANEX 301. Journal of the Iranian Chemical Society 19 (4):1539–46. doi:10.1007/s13738-021-02399-2.
  • Mehrabian, M., E. Noroozian, and S. Maghsoudi. 2021. Preparation and application of Fe3O4@ SiO2@ poly (o-phenylenediamine) nanoparticles as a novel magnetic sorbent for the solid-phase extraction of tellurium in water samples and its determination by ET-AAS. Microchemical Journal 165:106104. doi:10.1016/j.microc.2021.106104.
  • Najafi, N. M., H. Tavakoli, R. Alizadeh, and S. Seidi. 2010. Speciation and determination of ultra trace amounts of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry . Analytica Chimica Acta 670 (1-2):18–23. doi:10.1016/j.aca.2010.04.059.
  • Nyaba, L., N. R. Biata, J. C. Ngila, and P. N. Nomngongo. 2017. Ultrasound assisted-ionic liquid-dispersive liquid-liquid microextraction for preconcentration of inorganic tellurium in environmental water samples prior to inductively coupled plasma-optical emission spectrometry detection. Journal of Molecular Liquids 231:154–9. doi:10.1016/j.molliq.2017.02.012.
  • Ou, X., C. Wang, M. He, B. Chen, and B. Hu. 2020. Online simultaneous speciation of ultra-trace inorganic antimony and tellurium in environmental water by polymer monolithic capillary microextraction combined with inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 168:105854. doi:10.1016/j.sab.2020.105854.
  • Pan, Z., X. Zhu, H. Jiang, Y. Liu, and R. Chen. 2021. Flexible hierarchical Pd/SiO2-TiO2 nanofibrous catalytic membrane for complete and continuous reduction of p-nitrophenol. Journal of Experimental Nanoscience 16 (1):62–81. doi:10.1080/17458080.2021.1904137.
  • Pedro, J., J. Stripekis, A. Bonivardi, and M. Tudino. 2008. Determination of tellurium at ultra-trace levels in drinking water by on-line solid phase extraction coupled to graphite furnace atomic absorption spectrometer. Spectrochimica Acta Part B: Atomic Spectroscopy 63 (1):86–91. doi:10.1016/j.sab.2007.11.01.
  • Polat, N. 2022. Determination of lead in urine by slotted quartz tube (SQT)-flame atomic absorption spectrometry (FAAS) following preconcentration by dispersive liquid phase microextraction (DLLME). Analytical Letters 55 (1):47–56. doi:10.1080/00032719.2021.1914645.
  • Pourshamsi, T., F. Amri, and M. Abniki. 2021. A comprehensive review on application of the syringe in liquid- and solid-phase microextraction methods. Journal of the Iranian Chemical Society 18 (2):245–64. doi:10.1007/s13738-020-02025-7.
  • Pyrzynska, K. 2020. Nanomaterials in speciation analysis of metals and metalloids. Talanta 212:120784. doi:10.1016/j.talanta.2020.120784.
  • Saad, N., M. Al-Mawla, E. Moubarak, M. Al-Ghoul, and H. El-Rassy. 2015. Surface-functionalized silica aerogels and alcogels for methylene blue adsorption. RSC Advances 5 (8):6111–22. doi:10.1039/C4RA15504A.
  • Si, Y., X. Tang, J. Ge, S. Yang, M. El-Newehy, S. S. Al-Deyab, J. Yu, and B. Ding. 2014. In situ synthesis of flexible magnetic γ-Fe2O3@SiO2 nanofibrous membranes. Nanoscale 6 (4):2102–5. doi:10.1039/c3nr05879d.
  • Sun, H., J. Feng, S. Han, X. Ji, C. Li, J. Feng, and M. Sun. 2021. Recent advances in micro- and nanomaterial-based adsorbents for pipette-tip solid-phase extraction. Microchimica Acta 188 (6):04806–04810. doi:10.1007/s00604-021-04806-0.
  • Tan, Q., Y. Pan, L. Liu, S. Shu, and Y. Liu. 2019. Determination of ultratrace tellurium in water by hydride generation atomic absorption spectrometry using online separation and pre-concentration with nano-TiO2 microcolumn. Microchemical Journal 144:495–9. doi:10.1016/j.microc.2018.09.034.
  • Tseng, W. C., K. C. Hsu, C. S. Shiea, and Y. L. Huang. 2015. Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: A critical review. Analytica Chimica Acta 884:1–18. doi:10.1016/j.aca.2015.02.041.
  • Tuzen, M., and M. Soylak. 2009. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials 162 (2-3):724–9. doi:10.1016/j.jhazmat.2008.05.087.
  • Wang, X., L. Dou, L. Yang, J. Yu, and B. Ding. 2017. Hierarchical structured MnO2@SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance. Journal of Hazardous Materials 324 (Pt B):203–12. doi:10.1016/j.jhazmat.2016.10.050.
  • Wang, R., J. Guo, D. Chen, Y. Miao, J. Pan, W. W. Tjiu, and T. Liu. 2011. Tube brush’’ like ZnO/SiO2 hybrid to construct a flexible membrane with enhanced photocatalytic properties and recycling ability. Journal of Materials Chemistry 21 (48):19375–80. doi:10.1039/c1jm13979g.
  • Wang, X., M. Xi, H. Fong, and Z. Zhu. 2014. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO2 nanoparticles and electrospun TiO2/SiO2 nanofibers. ACS Applied Materials & Interfaces 6 (18):15925–32. doi:10.1021/am503542g.
  • Xu, F., J. Hu, J. Zhang, X. Hou, and X. Jiang. 2018. Nanomaterials in speciation analysis of mercury, arsenic, selenium, and chromium by analytical atomic/molecular spectrometry. Applied Spectroscopy Reviews 53 (2-4):333–48. doi:10.1080/05704928.2017.1323310.
  • Yamini, Y., M. Rezazadeh, and S. Seidi. 2019. Liquid-phase microextraction - The different principles and configurations. TrAC Trends in Analytical Chemistry 112:264–72. doi:10.1016/j.trac.2018.06.010.
  • Yildirim, E., P. Akay, Y. Arslan, S. Bakirdere, and O. Y. Ataman. 2012. Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes. Talanta 102:59–67. doi:10.1016/j.talanta.2012.06.002.
  • Yu, C., Q. Cai, Z.-X. Guo, Z. Yang, and S. B. Khoo. 2003. Speciation analysis of tellurium by solid-phase extraction in the presence of ammonium pyrrolidine dithiocarbamate and inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry 376 (2):236–42. doi:10.1007/s00216-003-1895-0.
  • Yu, Y., M. Zhu, W. Liang, S. Rhodes, and J. Fang. 2015. Synthesis of silica-titania composite aerogel beads for the removal of Rhodamine B in water. RSC Advances 5 (89):72437–43. doi:10.1039/C5RA13625C.
  • Zare, B., M. Nami, and A. R. Shahverdi. 2017. Tracing tellurium and its nanostructures in biology. Biological Trace Element Research 180 (2):171–81. doi:10.1007/s12011-017-1006-2.
  • Zhang, L., and X. Li. 2018. Facile preparation of honeycomb-structured TiO2 nanofilm via breath figures assembly and coffee ring effect. Materials Letters 227:74–7. doi:10.1016/j.matlet.2018.05.041.
  • Zhang, R., X. Wang, J. Song, Y. Si, X. Zhuang, J. Yu, and B. Ding. 2015. In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. Journal of Materials Chemistry A 3 (44):22136–44. doi:10.1039/C5TA05442G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.