208
Views
2
CrossRef citations to date
0
Altmetric
Biosensors

Determination of Escherichia coli O157:H7 Using a Flower-like Concanavalin A Copper (II) Phosphate Nanocomposite as a Probe for Lateral Flow Biosensing

, , , &
Pages 669-681 | Received 21 Mar 2022, Accepted 01 Jul 2022, Published online: 15 Jul 2022

References

  • Ai, T., Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, and L. Xia. 2020. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 296 (2):E32–40. doi:10.1148/radiol.2020200642.
  • Akanda, M. R., V. Tamilavan, S. Park, K. Jo, M. H. Hyun, and H. Yang. 2013. Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7. Analytical Chemistry 85 (3):1631–6. doi:10.1021/ac3028855.
  • Aydemir, D., F. Gecili, N. Ozdemir, and N. N. Ulusu. 2020. Synthesis and characterization of a triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) as a combination of three pancreatic digestive enzymes amylase, protease and lipase. Journal of Bioscience and Bioengineering 129 (6):679–86. doi:10.1016/j.jbiosc.2020.01.008.
  • Baccar, H., M. B. Mejri, I. Hafaiedh, T. Ktari, M. Aouni, and A. Abdelghani. 2010. Surface plasmon resonance immunosensor for bacteria detection. Talanta 82 (2):810–4. doi:10.1016/j.talanta.2010.05.060.
  • Bahadır, E. B., and M. K. Sezgintürk. 2016. Lateral flow assays: Principles, designs and labels. Trends in Analytical Chemistry 82:286–306. doi:10.1016/j.trac.2016.06.006.
  • Chan, J. F., C. C. Yip, K. K. To, T. H. Tang, S. C. Wong, K. H. Leung, A. Y. Fung, A. C. Ng, Z. Zou, H. W. Tsoi, et al. 2020. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. Journal of Clinical Microbiology 58 (5):e00310-20. doi:10.1128/JCM.00310-20.
  • Choi, D. H., S. K. Lee, Y. K. Oh, B. W. Bae, S. D. Lee, S. Kim, Y. B. Shin, and M. G. Kim. 2010. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosensors & Bioelectronics 25 (8):1999–2002. doi:10.1016/j.bios.2010.01.019.
  • Corstjens, P., M. Zuiderwijk, A. Brink, S. Li, H. Feindt, R. S. Niedbala, and H. Tanke. 2001. Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clinical Chemistry 47 (10):1885–93. doi:10.1093/clinchem/47.10.1885.
  • Ge, C., L. Yu, Z. Fang, and L. Zeng. 2013. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Analytical Chemistry 85 (19):9343–9. doi:10.1021/ac402202x.
  • Ge, J., J. Lei, and R. N. Zare. 2012. Protein-inorganic hybrid nanoflowers. Nature Nanotechnology 7 (7):428–32. doi:10.1038/nnano.2012.80.
  • Hao, L., L. Xue, F. Huang, G. Cai, W. Qi, M. Zhang, Q. Han, Z. Wang, and J. Lin. 2020. A Microfluidic biosensor based on magnetic nanoparticle separation, quantum dots labeling and MnO2 nanoflower amplification for rapid and sensitive detection of Salmonella typhimurium. Micromachines ) 11 (3):281. doi:10.3390/mi11030281.
  • Helali, S., A. S. E. Alatawi, and A. Abdelghani. 2018. Pathogenic Escherichia coli biosensor detection on chicken food samples. Journal of Food Safety 38 (5): 6. doi:ARTN :e12510. doi:10.1111/jfs.12510.
  • Houze, S. 2017. Rapid diagnostic test for malaria. Bulletin de la Société de Pathologie Exotique 110 (1):49–54. doi:10.1007/s13149-017-0549-y.
  • Huang, F. C., H. L. Zhang, L. Wang, W. H. Lai, and J. H. Lin. 2018. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen. Biosensors & Bioelectronics 100:583–90. doi:10.1016/j.bios.2017.10.005.
  • Ilhan, H., B. Guven, U. Dogan, H. Torul, S. Evran, D. Cetin, Z. Suludere, N. Saglam, I. H. Boyaci, and U. Tamer. 2019. The coupling of immunomagnetic enrichment of bacteria with paper-based platform. Talanta 201:245–52. doi:10.1016/j.talanta.2019.04.017.
  • Li, K., J. Wang, Y. He, M. A. Abdulrazaq, and Y. Yan. 2018. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity. Journal of Biotechnology 281:87–98. doi:10.1016/j.jbiotec.2018.06.344.
  • Li, Y. D., H. G. Wu, and Z. Q. Su. 2020. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coordination Chemistry Reviews 416: 16. doi:ARTN 213342 doi:10.1016/j.ccr.2020.213342.
  • Li, Y. X., R. Afrasiabi, F. Fathi, N. Wang, C. L. Xiang, R. Love, Z. She, and H. B. Kraatz. 2014. Impedance based detection of pathogenic E-coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosensors & Bioelectronics 58:193–9. doi:10.1016/j.bios.2014.02.045.
  • Lin, Z., Y. Xiao, Y. Yin, W. Hu, W. Liu, and H. Yang. 2014. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Applied Materials & Interfaces 6 (13):10775–82. doi:10.1021/am502757e.
  • Liu, Y., J. Chen, M. Du, X. Wang, X. Ji, and Z. He. 2017. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosensors & Bioelectronics 92:68–73. doi:10.1016/j.bios.2017.02.004.
  • Liu, Z., Y. Xianyu, W. Zheng, J. Zhang, Y. Luo, Y. Chen, M. Dong, J. Wu, and X. Jiang. 2018. T1-mediated nanosensor for immunoassay based on an activatable MnO2 nanoassembly. Analytical Chemistry 90 (4):2765–71. doi:10.1021/acs.analchem.7b04817.
  • Lone, S. A., and K. K. Sadhu. 2019. Gold nanoflower for selective detection of single arginine effect in alpha-helix conformational change over lysine in 310-helix peptide. Bioconjugate Chemistry 30 (6):1781–7. doi:10.1021/acs.bioconjchem.9b00301.
  • Mejri, M. B., H. Baccar, E. Baldrich, F. J. Del Campo, S. Helali, T. Ktari, A. Simonian, M. Aouni, and A. Abdelghani. 2010. Impedance biosensing using phages for bacteria detection: Generation of dual signals as the clue for in-chip assay confirmation. Biosensors & Bioelectronics 26 (4):1261–7. doi:10.1016/j.bios.2010.06.054.
  • Park, K. S., B. S. Batule, M. Chung, K. S. Kang, T. J. Park, M. I. Kim, and H. G. Park. 2017. A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA-inorganic hybrid nanoflowers. Journal of Materials Chemistry. B 5 (12):2231–4. doi:10.1039/c6tb03047e.
  • Phan, J. C., J. Pettitt, J. S. George, L. S. Fakoli, 3rd, F. M. Taweh, S. L. Bateman, R. S. Bennett, S. L. Norris, D. A. Spinnler, G. Pimentel, et al. 2016. Lateral flow immunoassays for Ebola virus disease detection in Liberia. The Journal of Infectious Diseases 214 (suppl 3):S222–S28. doi:10.1093/infdis/jiw251.
  • Pohlmann, C., I. Dieser, and M. Sprinzl. 2014. A lateral flow assay for identification of Escherichia coli by ribosomal RNA hybridisation. The Analyst 139 (5):1063–71. doi:10.1039/c3an02059b.
  • Reboud, J., G. Xu, A. Garrett, M. Adriko, Z. Yang, E. M. Tukahebwa, C. Rowell, and J. M. Cooper. 2019. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proceedings of the National Academy of Sciences 116 (11):4834–42. doi:10.1073/pnas.1812296116.
  • Seo, G., G. Lee, M. J. Kim, S. H. Baek, M. Choi, K. B. Ku, C. S. Lee, S. Jun, D. Park, H. G. Kim, et al. 2020. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14 (4):5135–42. doi:10.1021/acsnano.0c02823.
  • Shende, P., P. Kasture, and R. S. Gaud. 2018. Nanoflowers: The future trend of nanotechnology for multi-applications. Artificial Cells, Nanomedicine, and Biotechnology 46 (suppl 1):413–22. doi:10.1080/21691401.2018.1428812.
  • Shi, J., X. Yang, Y. Li, D. Wang, W. Liu, Z. Zhang, J. Liu, and K. Zhang. 2020. MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing. Biomaterials 256:120221. doi:10.1016/j.biomaterials.2020.120221.
  • Toubanaki, D. K., M. Margaroni, and E. Karagouni. 2016. Dual enhancement with a nanoparticle-based lateral flow biosensor for the determination of DNA. Analytical Letters 49 (7):1040–55. doi:10.1080/00032719.2015.1045592.
  • Tran, V., B. Walkenfort, M. Konig, M. Salehi, and S. Schlucker. 2019. Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry. Angewandte Chemie (International ed. in English) 58 (2):442–6. doi:10.1002/anie.201810917.
  • Wonderly, B., S. Jones, M. L. Gatton, J. Barber, M. Killip, C. Hudson, L. Carter, T. Brooks, A. J. H. Simpson, A. Semper, et al. 2019. Comparative performance of four rapid Ebola antigen-detection lateral flow immunoassays during the 2014-2016 Ebola epidemic in West Africa. PloS One 14 (3):e0212113. doi:10.1371/journal.pone.0212113.
  • Xu, M., R. Wang, and Y. Li. 2016. An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. The Analyst 141 (18):5441–9. doi:10.1039/c6an00873a.
  • Yang, H. Y., H. F. Zhou, H. Y. Hao, Q. J. Gong, and K. Nie. 2016. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sensors and Actuators B: Chemical 229:297–304. doi:10.1016/j.snb.2015.08.034.
  • Ye, R., C. Zhu, Y. Song, Q. Lu, X. Ge, X. Yang, M. J. Zhu, D. Du, H. Li, and Y. Lin. 2016. Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small (Weinheim an Der Bergstrasse, Germany) 12 (23):3094–100. doi:10.1002/smll.201600273.
  • Ying, N., C. Ju, Z. Li, W. Liu, and J. Wan. 2017. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talanta 164:432–8. doi:10.1016/j.talanta.2016.10.098.
  • Zhang, H., Y. P. Shi, F. Lan, Y. Pan, Y. K. Lin, J. Z. Lv, Z. H. Zhu, Q. Jiang, and C. Yi. 2014. Detection of single-digit foodborne pathogens with the naked eye using carbon nanotube-based multiple cycle signal amplification. Chemical Communications (Cambridge, England) 50 (15):1848–50. doi:10.1039/c3cc48417c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.