239
Views
0
CrossRef citations to date
0
Altmetric
Biosensors

Determination of Endonuclease Activity by an Enzyme-Free Fluorescent Biosensor Using the Hybridization Chain Reaction (HCR)

, , , , , , , , & show all
Pages 769-780 | Received 07 May 2022, Accepted 12 Jul 2022, Published online: 21 Jul 2022

References

  • Alves, J., T. Rüter, R. Geiger, A. Fliess, G. Maass, and A. Pingoud. 1989. Changing the hydrogen-bonding potential in the DNA binding site of EcoRI by site-directed mutagenesis drastically reduces the enzymic activity, not, however, the preference of this restriction endonuclease for cleavage within the site -GAATTC. Biochemistry 28 (6):2678–84. doi:10.1021/bi00432a047.
  • Arber, W. 1978. Restriction endonucleases. Angewandte Chemie (International ed. in English) 17 (2):73–9. doi:10.1002/anie.197800733.
  • Boothroyd, C. E., O. Dreesen, T. Leonova, K. I. Ly, L. M. Figueiredo, G. A. M. Cross, and F. N. Papavasiliou. 2009. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459 (7244):278–81. doi:10.1038/nature07982.
  • Chai, H., W. Cheng, D. Jin, and P. Miao. 2021. Recent progress in DNA hybridization chain reaction strategies for amplified biosensing. ACS Applied Materials & Interfaces 13 (33):38931–46. doi:10.1021/acsami.1c09000.
  • Chen, M., Z. Tang, C. Ma, and Y. Yan. 2020. A fluorometric aptamer based assay for prostate specific antigen based on enzyme-assisted target recycling. Sensors and Actuators B: Chemical 302:127178. doi:10.1016/j.snb.2019.127178.
  • Coskun, E., P. Jaruga, P. T. Reddy, and M. Dizdaroglu. 2015. Extreme expression of DNA repair protein apurinic/apyrimidinic endonuclease 1 (APE1) in human breast cancer as measured by liquid chromatography and isotope dilution tandem mass spectrometry. Biochemistry 54 (38):5787–90. doi:10.1021/acs.biochem.5b00928.
  • Deng, J., Y. Jin, G. Chen, and L. Wang. 2012a. Label-free fluorescent assay for real-time monitoring site-specific DNA cleavage by EcoRI endonuclease. The Analyst 137 (7):1713–7. doi:10.1039/C2AN16287C.
  • Deng, J., Y. Jin, L. Wang, G. Chen, and C. Zhang. 2012b. Sensitive detection of endonuclease activity and inhibition using gold nanorods. Biosensors & Bioelectronics 34 (1):144–50. doi:10.1016/j.bios.2012.01.034.
  • Dirks, R. M, and N. A. Pierce. 2004. Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America 101 (43):15275–8. doi:10.1073/pnas.0407024101.
  • Fan, K., C. Zheng, Y. Zhao, H. Fu, B. Qu, and L. Lu. 2018. Label-free ultrasensitive determination of EcoRI activity based on terminal deoxynucleotidyl transferase generated G-quadruplexes. Microchemical Journal 143:286–91. doi:10.1016/j.microc.2018.08.024.
  • Gamella, M., S. Campuzano, F. Conzuelo, M. Esteban-Torres, B. de las Rivas, A. J. Reviejo, R. Muñoz, and J. M. Pingarrón. 2013. An amperometric affinity penicillin-binding protein magnetosensor for the detection of β-lactam antibiotics in milk. The Analyst 138 (7):2013–22. doi:10.1039/C3AN36727D.
  • Gao, C., B. Che, and H. Dai. 2021. A new G-triplex-based strategy for sensitivity enhancement of the detection of endonuclease activity and inhibition. RSC Advances 11 (45):28008–13. doi:10.1039/D1RA04203C.
  • Grindley, N. D. F., K. L. Whiteson, and P. A. Rice. 2006. Mechanisms of site-specific recombination. Annual Review of Biochemistry 75 (1):567–605. doi:10.1146/annurev.biochem.73.011303.073908.
  • Guo, Q., X. Yang, K. Wang, W. Tan, W. Li, H. Tang, and H. Li. 2009. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Research 37 (3):e20 − e20. doi:10.1093/nar/gkn1024.
  • He, H., J. Dai, Z. Duan, B. Zheng, Y. Meng, Y. Guoand, and D. Xiao. 2016. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection. Scientific Reports 6 (1):30878. doi:10.1038/srep30878.
  • Heithoff, D. M., R. L. Sinsheimer, D. A. Low, and M. J. Mahan. 1999. An essential role for DNA adenine methylation in bacterial virulence. Science 284 (5416):967–70. doi:10.1126/science.284.5416.967.
  • Jeltsch, A., A. Fritz, J. Alves, H. Wolfes, and A. Pingoud. 1993. A fast and accurate enzyme-linked immunosorbent assay for the determination of the DNA cleavage activity of restriction endonucleases. Analytical Biochemistry 213 (2):234–40. doi:10.1006/abio.1993.1415.
  • Lieber, M. R. 1997. The FEN-1 family of structure-specific nucleases in eukaryotic dna replication, recombination and repair. BioEssays 19 (3):233–40. doi:10.1002/bies.950190309.
  • Lizardi, P. M., X. Huang, Z. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward. 1998. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics 19 (3):225–32. doi:10.1038/898.
  • Ma, M., L. Benimetskaya, I. Lebedeva, J. Dignam, G. Takle, and C. A. Stein. 2000. Intracellular mRNA cleavage induced through activation of RNase P by nuclease-resistant external guide sequences. Nature Biotechnology 18 (1):58–61. doi:10.1038/71924.
  • Marti, T. M, and O. Fleck. 2004. DNA repair nucleases. Cellular and Molecular Life Sciences : CMLS 61 (3):336–54. doi:10.1007/s00018-003-3223-4.
  • Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28 (12):e63 − e63. doi:10.1093/nar/28.12.e63.
  • Pingoud, A, and A. Jeltsch. 2001. Structure and function of type II restriction endonucleases. Nucleic Acids Research 29 (18):3705–27. doi:10.1093/nar/29.18.3705.
  • Sang, F., G. Li, J. Li, J. Pan, Z. Zhangand, and X. Zhang. 2019. A hairpin-type DNA probe for direct colorimetric detection of endonuclease activity and inhibition based on the deaggregation of gold nanoparticles. Mikrochimica Acta 186 (2):100. doi:10.1007/s00604-018-3164-0.
  • Straney, D. C, and D. M. Crothers. 1987. Effect of drug-DNA interactions upon transcription initiation at the lac promoter. Biochemistry 26 (7):1987–95. doi:10.1021/bi00381a031.
  • Tang, Z., H. Liu, M. Chen, and C. Ma. 2020. Label-free one-step fluorescent method for the detection of endonuclease activity based on thioflavin T/G-quadruplex. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 228:117823. doi:10.1016/j.saa.2019.117823.
  • VanderVeen, L. A., A. Druckova, J. N. Riggins, J. L. Sorrells, F. P. Guengerich, and L. J. Marnett. 2005. Differential DNA recognition and cleavage by EcoRI dependent on the Dynamic equilibrium between the two forms of the malondialdehyde-deoxyguanosine adduct. Biochemistry 44 (13):5024–33. doi:10.1021/bi0472898.
  • Wu, J. T., J. Lv, X. Zheng, and Z. Wu. 2021. Hybridization chain reaction and its applications in biosensing. Talanta 234:122637. doi:10.1016/j.talanta.2021.122637.
  • Xu, X., M. S. Han, and C. A. Mirkin. 2007. A gold-nanoparticle-based real-Time colorimetric screening method for endonuclease activity and inhibition. Angewandte Chemie (International ed. in English) 46 (19):3468–70. doi:10.1002/anie.200605249.
  • Yang, W., J. Tian, L. Wang, Y. Zhao, and S. Zhao. 2015. DNA-scaffolded silver nanoclusters as an on–off label-free fluorescence probe for the selective detection of endonuclease activity and inhibition. Analytical Methods 7 (22):9452–7. doi:10.1039/C5AY01946J.
  • Yin, P., H. M. T. Choi, C. R. Calvert, and N. A. Pierce. 2008. Programming biomolecular self-assembly pathways. Nature 451 (7176):318–22. doi:10.1038/nature06451.
  • Zhang, X., R. Cheng, Z. Shi, and Y. Jin. 2017. Label-free detection of EcoRI endonuclease activity via fluorescent DNA logic gate. Sensors and Actuators B: Chemical 244:387–92. doi:10.1016/j.snb.2016.12.144.
  • Zhang, J., Z. Shi, and Y. Jin. 2015. Enzyme-free and label-free signal amplification for monitoring endonuclease activity and inhibition via hybridization chain reaction. The Analyst 140 (10):3500–6. doi:10.1039/C5AN00304K.
  • Zhang, D. Y., A. Turberfield, B. Yurke, and E. Winfree. 2007. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318 (5853):1121–5. doi:10.1126/science.1148532.
  • Zhao, H., J. Dong, F. Zhou, and B. Li. 2017. One facile fluorescence strategy for sensitive detection of endonuclease activity using DNA-templated copper nanoclusters as signal indicators. Sensors and Actuators B: Chemical 238:828–33. doi:10.1016/j.snb.2016.07.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.