258
Views
3
CrossRef citations to date
0
Altmetric
Electrochemistry

One-Step Electrochemical Fabrication of Lithium-Intercalated Pencil Graphite Electrode (PGE) for the Differential Pulse Voltammetric (DPV) Determination of l-Tyrosine

, ORCID Icon &
Pages 1031-1047 | Received 28 Jun 2022, Accepted 22 Aug 2022, Published online: 06 Sep 2022

References

  • Andrensek, S., A. Golc-Wondra, and M. Prosek. 2003. Determination of phenylalanine and tyrosine by liquid chromatography/mass spectrometry. Journal of AOAC International 86 (4):753–8. doi:10.1093/jaoac/86.4.753.
  • Bencze, W. L, and K. Schmid. 1957. Determination of tyrosine and tryptophan in proteins. Analytical Chemistry 29 (8):1193–6. doi:10.1021/ac60128a025.
  • Bilal, S., A. Akbar, and A. Shah. 2019. Highly selective and reproducible electrochemical sensing of ascorbic acid through a conductive polymer coated electrode. Polymers 11 (8):1346. doi:10.3390/polym11081346.
  • Chethana, B. K., S. Basavanna, and Y. A. Naik. 2012. Voltammetric determination of diclofenac sodium using tyrosine-modified carbon paste electrode. Industrial & Engineering Chemistry Research 51 (31):10287–95. doi:10.1021/ie202921e.
  • David, I. G., D. E. Popa, and M. Buleandra. 2017. Pencil graphite electrodes: A versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry 2017:1905968. doi:10.1155/2017/1905968.
  • Deng, C., Y. Deng, B. Wang, and X. Yang. 2002. Gas chromatography-mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 780 (2):407–13. doi:10.1016/S1570-0232(02)00632-3.
  • Deng, K., J. Zhou, and X. F. Li. 2013. Direct electrochemical reduction of graphene oxide and its application to determination of l-tryptophan and l-tyrosine. Colloids and Surfaces. B, Biointerfaces 101:183–8. doi:10.1016/j.colsurfb.2012.06.007.
  • Deng, P., J. Xiao, J. Feng, Y. Tian, Y. Wu, J. Li, and Q. He. 2021. Highly sensitive electrochemical sensor for tyrosine detection using a sub-millimeter electrode. Microchemical Journal 165:106106. doi:10.1016/j.microc.2021.106106.
  • Fan, Y., J. H. Liu, H. T. Lu, and Q. Zhang. 2011. Electrochemistry and voltammetric determination of l-tryptophan and l-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchimica Acta 173 (1–2):241–7. doi:10.1007/s00604-011-0556-9.
  • Feng, J., P. Deng, J. Xiao, J. Li, Y. Tian, Y. Wu, J. Liu, G. Li, and Q. He. 2021. New voltammetric method for determination of tyrosine in foodstuffs using an oxygen-functionalized multi-walled carbon nanotubes modified acetylene black paste electrode. Journal of Food Composition and Analysis 96:103708. doi:10.1016/j.jfca.2020.103708.
  • Gorduk, O., S. Gorduk, and Y. Sahin. 2020. Fabrication of tetra-substituted copper(II) phthalocyanine-graphene modified pencil graphite electrode for amperometric detection of hydrogen peroxide. ECS Journal of Solid State Science and Technology 9 (6):61003. doi:10.1149/2162-8777/ab9c7a.
  • Goriparti, S., E. Miele, F. De Angelis, E. D. Fabrizio, R. P. Zaccaria, and C. Capiglia. 2014. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 257:421–43. doi:10.1016/j.jpowsour.2013.11.103.
  • Hashiguti, H., D. Nakahara, W. Maruyama, M. Naoi, and T. Ikeda. 1993. Simultaneous determination of in vivo hydroxylation of tyrosine and tryptophan in rat striatum by microdialysis-HPLC: Relationship between dopamine and serotonin biosynthesis. Journal of Neural Transmission. General Section 93 (3):213–23. doi:10.1007/BF01244998.
  • Huang, K. J., D. F. Luo, W. Z. Xie, and Y. S. Yu. 2008. Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode. Colloids and Surfaces. B, Biointerfaces 61 (2):176–81. doi:10.1016/j.colsurfb.2007.08.003.
  • Jeong, S. K., H. Y. Song, S. I. Kim, T. Abe, W. S. Jeon, R. Z. Yin, and Y. S. Kim. 2013. A simple method of electrochemical lithium intercalation within graphite from a propylene carbonate-based solution. Electrochemistry Communications 31:24–7. doi:10.1016/j.elecom.2013.02.019.
  • Kanchana, P., N. Lavanya, and C. Sekar. 2014. Development of amperometric l-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles. Materials Science & Engineering. C, Materials for Biological Applications 35 (1):85–91. doi:10.1016/j.msec.2013.10.013.
  • Kavitha, C., K. Bramhaiah, and N. S. John. 2020. Low-cost electrochemical detection of l-tyrosine using an rGO–Cu modified pencil graphite electrode and its surface orientation on a Ag electrode using an ex situ spectroelectrochemical method. RSC Advances 10 (39):22871–80. doi:10.1039/d0ra04015k.
  • Koyun, O., S. Gorduk, M. B. Arvas, and Y. Sahin. 2018. Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russian Journal of Electrochemistry 54 (11):796–808. doi:10.1134/S1023193518110046.
  • Laschuk, N. O., E. B. Easton, and O. V. Zenkina. 2021. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances 11 (45):27925–36. doi:10.1039/d1ra03785d.
  • Laviron, E. 1974. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 52 (3):355–93. doi:10.1016/S0022-0728(74)80448-1.
  • Li, C. 2006. Voltammetric determination of tyrosine based on an l-serine polymer film electrode. Colloids and Surfaces. B, Biointerfaces 50 (2):147–51. doi:10.1016/j.colsurfb.2006.05.004.
  • Li, F., J. Song, D. Gao, Q. Zhang, D. Han, and L. Niu. 2009. Simple and rapid voltammetric determination of morphine at electrochemically pretreated glassy carbon electrodes. Talanta 79 (3):845–50. doi:10.1016/j.talanta.2009.05.011.
  • Li, J., A. Cassell, L. Delzeit, J. Han, and M. Meyyappan. 2002. Novel three-dimensional electrodes: Electrochemical properties of carbon nanotube ensembles. The Journal of Physical Chemistry B 106 (36):9299–305. doi:10.1021/jp021201n.
  • Madrakian, T., E. Haghshenas, and A. Afkhami. 2014. Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sensors and Actuators B: Chemical 193:451–60. doi:10.1016/j.snb.2013.11.117.
  • Mo, X. M., Y. Li, A. G. Tang, and Y. P. Ren. 2013. Simultaneous determination of phenylalanine and tyrosine in peripheral capillary blood by HPLC with ultraviolet detection. Clinical Biochemistry 46 (12):1074–8. doi:10.1016/j.clinbiochem.2013.05.047.
  • Nellaiappan, S, and A. S. Kumar. 2013. Selective flow injection analysis of iodate in iodized table salts by riboflavin immobilized multiwalled carbon nanotubes chemically modified electrode. Electrochimica Acta 109:59–66. doi:10.1016/j.electacta.2013.07.076.
  • Nguyen, D. K, and T. Kim. 2018. Graphene quantum dots produced by exfoliation of intercalated graphite nanoparticles and their application for temperature sensors. Applied Surface Science 427:1152–7. doi:10.1016/j.apsusc.2017.09.020.
  • Orhan, H., N. P. E. Vermeulen, C. Tump, H. Zappey, and J. H. N. Meerman. 2004. Simultaneous determination of tyrosine, phenylalanine and deoxyguanosine oxidation products by liquid chromatography-tandem mass spectrometry as non-invasive biomarkers for oxidative damage. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 799 (2):245–54. doi:10.1016/j.jchromb.2003.10.056.
  • Özcan, A. 2014. Synergistic effect of lithium perchlorate and sodium hydroxide in the preparation of electrochemically treated pencil graphite electrodes for selective and sensitive bisphenol A detection in water samples. Electroanalysis 26 (7):1631–9. doi:10.1002/elan.201400082.
  • Özcan, A, and Y. Şahin. 2010. Preparation of selective and sensitive electrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum. Biosensors and Bioelectronics 25 (11):2497–502. doi:10.1016/j.bios.2010.04.020.
  • Pajkossy, T, and R. Jurczakowski. 2017. Electrochemical impedance spectroscopy in interfacial studies. Current Opinion in Electrochemistry 1 (1):53–8. doi:10.1016/j.coelec.2017.01.006.
  • Rahman, M. M., N. S. Lopa, K. Kim, and J. J. Lee. 2015. Selective detection of l-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly(thionine)-modified glassy carbon electrode. Journal of Electroanalytical Chemistry 754:87–93. doi:10.1016/j.jelechem.2015.06.018.
  • Rana, A., N. Baig, and T. A. Saleh. 2019. Electrochemically pretreated carbon electrodes and their electroanalytical applications – A review. Journal of Electroanalytical Chemistry 833:313–32. doi:10.1016/j.jelechem.2018.12.019.
  • Rana, A., A. N. Kawde, and M. Ibrahim. 2018. Simple and sensitive detection of 4-nitrophenol in real water samples using gold nanoparticles modified pretreated graphite pencil electrode. Journal of Electroanalytical Chemistry 820:24–31. doi:10.1016/j.jelechem.2018.04.055.
  • Serbest, H., S. Bakırdere, and S. Keyf. 2022. Determination of silver in metal plating wastewater by slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) after preconcentration with stearic acid-coated magnetite nanoparticle-based solid-phase microextraction (SA-MNP-SPME). Analytical Letters 55 (7):1104–18. doi:10.1080/00032719.2021.1986718.
  • Sivasankaran, U., A. E. Vikraman, D. Thomas, and K. G. Kumar. 2016. Nanomolar level determination of octyl gallate in fats and oils. Food Analytical Methods 9 (7):2115–23. doi:10.1007/s12161-015-0356-7.
  • Tang, X., Y. Liu, H. Hou, and T. You. 2010. Electrochemical determination of l-tryptophan, l-tyrosine and l-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80 (5):2182–6. doi:10.1016/j.talanta.2009.11.027.
  • Temoçin, Z. 2013. Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid. Sensors and Actuators B: Chemical 176:796–802. doi:10.1016/j.snb.2012.09.078.
  • Varmira, K., G. Mohammadi, M. Mahmoudi, R. Khodarahmi, K. Rashidi, M. Hedayati, H. C. Goicoechea, and A. R. Jalalvand. 2018. Fabrication of a novel enzymatic electrochemical biosensor for determination of tyrosine in some food samples. Talanta 183:1–10. doi:10.1016/j.talanta.2018.02.053.
  • Varodi, C., F. Pogăcean, M. Coroş, A. Ciorîță, and S. Pruneanu. 2022. Electrochemical l-tyrosine sensor based on a glassy carbon electrode modified with exfoliated graphene. Sensors 22 (10):3606. doi:10.3390/s22103606.
  • Wang, F., Y. Qing, and Y. X. Ci. 1992. Spectrofluorimetric determination of the substrates based on the fluorescence formation with the peroxidase-like conjugates of hemie with proteins. Analytical Letters 25 (8):1469–78. doi:10.1080/00032719208017129.
  • Wang, J, and L. D. Hutchins. 1985. Activation of glassy carbon electrodes by alternating current electrochemical treatment. Analytica Chimica Acta 167:325–34. doi:10.1016/S0003-2670(00)84435-9.
  • Xu, J., Y. Wang, Y. Xian, L. Jin, and K. Tanaka. 2003. Preparation of multiwall carbon nanotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion chromatography. Talanta 60 (6):1123–30. doi:10.1016/S0039-9140(03)00214-5.
  • Xu, Q, and S. F. Wang. 2005. Electrocatalytic oxidation and direct determination of l-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchimica Acta 151 (1–2):47–52. doi:10.1007/s00604-005-0408-6.
  • Yates, N. D. J., M. A. Fascione, and A. Parkin. 2018. Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chemistry (Weinheim an Der Bergstrasse, Germany) 24 (47):12164–82. doi:10.1002/chem.201800750.
  • Yokuş, Ö. A., F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, and M. L. Yola. 2016. Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: Application to the simultaneous determination of l-tyrosine and l-tryptophan. Sensors and Actuators B: Chemical 233:47–54. doi:10.1016/j.snb.2016.04.050.
  • Yola, M. L., T. Eren, and N. Atar. 2015. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sensors and Actuators B: Chemical 210:149–57. doi:10.1016/j.snb.2014.12.098.
  • Zhang, X., G. Wang, Q. Wang, L. Zhao, M. Wang, and B. Fang. 2009. Cupreous oxide nanobelts as detector for determination of l-tyrosine. Materials Science and Engineering: B 156 (1–3):6–9. doi:10.1016/j.mseb.2008.09.050.
  • Zhao, G., Y. Qi, and Y. Tian. 2006. Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis 18 (8):830–4. doi:10.1002/elan.200503455.
  • Zhu, S., J. Zhang, X. Zhao, H. Wang, G. Xu, and J. You. 2014. Electrochemical behavior and voltammetric determination of l-tryptophan and l-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns. Microchimica Acta 181 (3–4):445–51. doi:10.1007/s00604-013-1138-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.