126
Views
1
CrossRef citations to date
0
Altmetric
Nanotechnology

Incorporation of Betulinic Acid into Silica-Based Nanoparticles for Controlled Phytochemical Release

, , , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1146-1160 | Received 06 Jun 2022, Accepted 30 Aug 2022, Published online: 15 Sep 2022

References

  • Alakurtti, S., T. Heiska, A. Kiriazis, N. Sacerdoti-Sierra, C. L. Jaffe, and J. Yli-Kauhaluoma. 2010. Synthesis and anti-leishmanial activity of heterocyclic betulin derivatives. Bioorganic & Medicinal Chemistry 18 (4):1573–82. doi:10.1016/j.bmc.2010.01.003.
  • Amiri, S., S. Dastghaib, M. Ahmadi, P. Mehrbod, F. Khadem, H. Behrouj, M. R. Aghanoori, F. Machaj, M. Ghamsari, J. Rosik, et al. 2020. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnology Advances 38:107409. doi:10.1016/j.biotechadv.2019.06.008.
  • Barret, E. P., L. G. Joyner, and P. P. Halenda. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 73 (1):373–80. doi:10.1021/ja01145a126.
  • Batista, J. N. M., E. H. de Faria, P. S. Calefi, K. J. Ciuffi, E. J. Nassar, W. R. Cunha, J. M. A. Caiut, and L. A. Rocha. 2012. Controlling silicate meso-structures using sucupira oil as a new swelling agent. Applied Surface Science 258 (12):5111–6. doi:10.1016/j.apsusc.2012.01.143.
  • Bergman, L., P. Kankaanpää, S. Tiitta, A. Duchanoy, L. Li, J. Heino, and M. Lindén. 2013. Intracellular Degradation of Multilabeled Poly(Ethylene imine)–Mesoporous Silica–Silica Nanoparticles: Implications for Drug Release. Molecular Pharmaceutics 10 (5):1795–803. 10.1021/mp3005879.
  • Birgani, G. A., A. Ahangarpour, L. Khorsandi, and H. F. Moghaddam. 2018. Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. Brazilian Journal of Pharmaceutical Sciences 54 (2):e17171. doi:10.1590/s2175-97902018000217171.
  • Braz, W. R., N. L. Rocha, E. H. de Faria, M. L. A. E. Silva, K. J. Ciuffi, D. C. Tavares, R. A. Furtado, L. A. Rocha, and E. J. Nassar. 2016. Incorporation of anti-inflammatory agent into mesoporous silica. Nanotechnology 27 (38):385103. doi:10.1088/0957-4484/27/38/385103.
  • Cedeño, G. H., R. Silva-Rodrigo, A. Guevara-Lara, J. A. Melo-Banda, A. R. de La Torre, F. M. Flores, and A. Castillo-Mares. 2016. Role of the Si/Al molar ratio and pH in NIW/MCM41-Al2O3 catalysts for HDS of DBT. Catalysis Today 271:64–79. doi:10.1016/j.cattod.2015.10.024.
  • Chang, S. S., B. Clair, J. Ruelle, J. Beauchêne, F. Di Renzo, F. Quignard, G. J. Zhao, H. Yamamoto, and J. Gril. 2009. Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of Experimental Botany 60 (11):3023–30. doi:10.1093/jxb/erp133.
  • Cichewicz, R. H, and S. A. Kouzi. 2004. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Medicinal Research Reviews 24 (1):90–114. 2004
  • Cîntă-Pînzaru, S., C. A. Dehelean, C. Soica, M. Culea, and F. Borcan. 2012. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS. Chemistry Central Journal. 6:1–12.
  • Colilla, M., Izquierdo-Barba, I., & Vallet-Regí, M. 2010. Phosphorus-containing SBA-15 materials as bisphosphonate carriers for osteoporosis treatment. Microporous and mesoporous materials, 135(1-3), 51–59.
  • Damas, J. O., S. B. Moscardini, L. R. Oliveira, R. R. da Silva, E. J. Nassar, E. H. de Faria, K. J. Ciuffi, S. J. Ribeiro, and L. A. Rocha. 2019. Effect of silica coating on the catalytic activity of maghemite nanoparticles impregnated into mesoporous silica matrix. Materials Chemistry and Physics. 225:145–52. doi:10.1016/j.matchemphys.2018.12.051.
  • de Melo, C. L., M. G. Queiroz, A. C. Arruda Filho, A. M. Rodrigues, D. F. de Sousa, J. G. Almeida, O. D. Pessoa, E. R. Silveira, D. B. Menezes, T. S. Melo, et al. 2009. Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet. Journal of Agricultural and Food Chemistry 57 (19):8776–81. doi:10.1021/jf900768w.
  • Ding, H., X. Wu, J. Pan, X. Hu, D. Gong, and G. Zhang. 2018. New insights into the inhibition mechanism of betulinic acid on α-glucosidase. Journal of Agricultural and Food Chemistry 66 (27):7065–75. doi:10.1021/acs.jafc.8b02992.
  • e Oliveira, L. S., L. Marçal, L. A. Rocha, E. H. de Faria, K. J. Ciuffi, E. J. Nassar, and I. C. Correa. 2018. Photoinitiator and anesthetic incorporation into mesoporous silica. Powder Technology 326:62–8. doi:10.1016/j.powtec.2017.12.044.
  • Guo, S, and L. Huang. 2011. Nanoparticles escaping RES and endosome: Challenges for siRNA delivery for cancer therapy. Journal of Nanomaterials. 2011:1–12. doi:10.1155/2011/742895.
  • Huang, X., L. Li, T. Liu, N. Hao, H. Liu, D. Chen, and F. Tang. 2011. The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo. ACS Nano. 5 (7):5390–9. 10.1021/nn200365a.
  • Jal, P. K., S. Patel, and B. K. Mishra. 2004. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62 (5):1005–28. doi:10.1016/j.talanta.2003.10.028.
  • Jonnalagadda, S. C., P. Suman, D. C. Morgan, and J. N. Seay. 2017. Recent developments on the synthesis and applications of betulin and betulinic acid derivatives as therapeutic agents. Studies in Natural Products Chemistry 53:45–84.
  • Kim, B. Y., J. T. Rutka, and W. C. Chan. 2010. Nanomedicine. The New England Journal of Medicine 363 (25):2434–43. doi:10.1056/NEJMra0912273.
  • Korsmeyer, R. W., R. Gurny, E. Doelker, P. Buri, and N. A. Peppas. 1983. Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics. 15 (1):25–35. doi:10.1016/0378-5173(83)90064-9.
  • Li, S. D, and L. Huang. 2009. Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochimica et Biophysica Acta 1788 (10):2259–66. doi:10.1016/j.bbamem.2009.06.022.
  • Liu, Y., X. Zhang, L. Luo, L. Li, Y. He, J. An, and D. Gao. 2018. Self-Assembly of Stimuli-Responsive Au–Pd Bimetallic Nanoflowers Based on Betulinic Acid Liposomes for Synergistic Chemo-Photothermal Cancer Therapy. ACS Biomaterials Science & Engineering 4 (8):2911–21. 10.1021/acsbiomaterials.8b00766.
  • Moghaddam, M. G., F. B. H. Ahmad, and A. Samzadeh-Kermani. 2012. Biological activity of betulinic acid: A review. Pharmacology & Pharmacy 03 (02):119–23. doi:10.4236/pp.2012.32018.
  • Moodley, K., J. Rarey, and D. Ramjugernath. 2016. Experimental solubility for betulin and estrone in various solvents within the temperature range T = (293.2 to 328.2) K. Journal of Chemical Thermodynamics. 98:42–50. doi:10.1016/j.jct.2016.02.006.
  • Nassar, E. J., K. J. Ciuffi, R. R. Gonçalves, Y. Messaddeq, and S. J. Ribeiro. 2003. Filmes de titânio-silício preparados por “spin” e “dip-coating”. Química Nova 26 (5):674–7. doi:10.1590/S0100-40422003000500010.
  • Nassar, E. J., E. C. d O. Nassor, L. R. Ávila, P. F. S. Pereira, A. Cestari, L. M. Luz, K. J. Ciuffi, and P. S. Calefi. 2007a. Spherical hybrid silica particles modified by methacrylate groups. Journal of Sol-Gel Science and Technology 43 (1):21–6. doi:10.1007/s10971-007-1546-6.
  • Nassar, E. J., L. R. Ávila, P. F. Pereira, E. C. Nassor, A. Cestari, K. J. Ciuffi, and P. S. Calefi. 2007b. Fenilsilicato dopado com Eu III obtido pelo método sol-gel. Química Nova 30 (7):1567–72. doi:10.1590/S0100-40422007000700013.
  • Pisha, E., H. Chai, I. S. Lee, T. E. Chagwedera, N. R. Farnsworth, G. A. Cordell, C. W. Beecher, H. H. Fong, A. D. Kinghorn, and D. M. Brown. 1995. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine 1 (10):1046–51. doi:10.1038/nm1095-1046.
  • Ríos, J. L, and S. Máñez. 2018. New pharmacological opportunities for betulinic acid. Planta Medica 84 (1):8–19. doi:10.1055/s-0043-123472.
  • Ritger, P. L, and N. A. Peppas. 1987a. A simple equation for description of solute release I. Fickian and anomalous release from swellable devices. Journal of Controlled Release 5 (1):23–36. doi:10.1016/0168-3659(87)90034-4.
  • Ritger, P. L, and N. A. Peppas. 1987b. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release 5 (1):37–42. doi:10.1016/0168-3659(87)90035-6.
  • Rocha, L. A., J. M. Caiut, Y. Messaddeq, S. J. Ribeiro, M. A. Martines, J. Freiria, J. Dexpert-Ghys, and M. Verelst. 2010. Non-leachable highly luminescent ordered mesoporous SiO2 spherical particles. Nanotechnology 21 (15):155603. doi:10.1088/0957-4484/21/15/155603.
  • Rocha, L. A., J. Do C Freiria, J. M. A. Caiut, S. J. Ribeiro, Y. Messaddeq, M. Verelst, and J. Dexpert-Ghys. 2015. Luminescence properties of Eu-complex formations into ordered mesoporous silica particles obtained by the spray pyrolysis process. Nanotechnology 26 (33):335604. doi:10.1088/0957-4484/26/33/335604.
  • Sánchez-Muñoz, S., S. Gómez-Ruiz, D. Pérez-Quintanilla, S. Morante-Zarcero, I. Sierra, S. Prashar, R. Paschke, and G. N. Kaluđerović. 2012. Preliminary studies of the anticâncer applications of mesoporous materials functionalized with the natural product betulinic acid. Chem. Med. Chem. 7 (4):670–9. doi:10.1002/cmdc.201100588.
  • Saneja, A., D. Arora, R. Kumar, R. D. Dubey, A. K. Panda, and P. N. Gupta. 2018. Therapeutic applications of betulinic acid nanoformulations. Annals of the New York Academy of Sciences 1421 (1):5–18. doi:10.1111/nyas.13570.
  • Soica, C. M., C. A. Dehelean, C. Peev, M. Aluas, I. Zupkó, P. Kása, Jr., and E. Alexa. 2012. Physico-chemical comparison of betulinic acid, betulin and birch bark extract and in vitro investigation of their cytotoxic effects towards skin epidermoid carcinoma (A431), breast carcinoma (MCF7) and cervix adenocarcinoma (HeLa) cell lines. Natural Product Research 26 (10):968–74.
  • Su, D., Y. Q. Gao, W. B. Dai, Y. Hu, Y. F. Wu, and Q. X. Mei. 2017. Helicteric acid, oleanic acid, and betulinic acid, three triterpenes from Helicteres angustifolia L., inhibit proliferation and induce apoptosis in HT-29 colorectal cancer cells via suppressing NF-κB and STAT3 Signaling. Evidence-Based Complementary and Alternative Medicine, 2017.
  • Trumbull, E. R., E. Bianchi, D. J. Eckert, R. M. Wiedhopf, and d J. R. Cole. 1976. Tumor inhibitory agents from Vauquelinia corymbosa (Rosaceae). Journal of Pharmaceutical Sciences 65 (9):1407–8. an doi:10.1002/jps.2600650938.
  • Wu, X., M. Wu, and J. X. Zhao. 2014. Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomedicine: Nanotechnology, Biology and Medicine 10 (2):297–312. 10.1016/j.nano.2013.08.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.