336
Views
3
CrossRef citations to date
0
Altmetric
Sample Preparation

Deep Eutectic Solvent Based Liquid-Liquid Microextraction of Mercury in Water, Hair and Fish with Spectrophotometric Determination: A Green Protocol

&
Pages 1161-1173 | Received 05 Aug 2022, Accepted 01 Sep 2022, Published online: 09 Sep 2022

References

  • Abdolmohammad-Zadeh, H., R. Mohammad-Rezaei, and A. Salimi. 2020. Preconcentration of mercury (II) using a magnetite@ carbon/dithizone nanocomposite, and its quantification by anodic stripping voltammetry. Microchimica Acta 187 (1):1–8. doi:10.1007/s00604-019-3937-0.
  • Akramipour, R., M. R. Golpayegani, S. Gheini, and N. Fattahi. 2018. Speciation of organic/inorganic mercury and total mercury in blood samples using vortex assisted dispersive liquid-liquid microextraction based on the freezing of deep eutectic solvent followed by GFAAS. Talanta 186:17–23. doi:10.1016/j.talanta.2018.04.042.
  • Alshana, U., M. Hassan, M. Al-Nidawi, E. Yilmaz, and M. Soylak. 2020. Switchable-hydrophilicity solvent liquid-liquid microextraction. TrAC Trends in Analytical Chemistry 131:116025. doi:10.1016/j.trac.2020.116025.
  • Andreoli, V, and F. Sprovieri. 2017. Genetic aspects of susceptibility to mercury toxicity: an overview. International Journal of Environmental Research and Public Health 14 (1):93. doi:10.3390/ijerph14010093.
  • Aydin, F., E. Yilmaz, and M. Soylak. 2017. A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchemical Journal 132:280–5. doi:10.1016/j.microc.2017.02.014.
  • Ballesteros-Gómez, A., S. Rubio, and D. Pérez-Bendito. 2009. Potential of supramolecular solvents for the extraction of contaminants in liquid foods. Journal of Chromatography, A 1216 (3):530–9.
  • Basadi, N., K. Ghanemi, and Y. Nikpour. 2021. l-Cystine-functionalized graphene oxide nanosheets for effective extraction and preconcentration of mercury ions from environmental waters. Chemical Papers 75 (3):1083–93. doi:10.1007/s11696-020-01368-y.
  • Blanco, R. M., M. T. Villanueva, J. E. S. Urı́a, and A. Sanz-Medel. 2000. Field sampling, preconcentration and determination of mercury species in river waters. Analytica Chimica Acta 419 (2):137–44. doi:10.1016/S0003-2670(00)01002-3.
  • Budnik, L. T, and L. Casteleyn. 2019. Mercury pollution in modern times and its socio-medical consequences. The Science of the Total Environment 654:720–34. doi:10.1016/j.scitotenv.2018.10.408.
  • Chen, J., X. Li, A. Huang, W. Deng, and Y. Xiao. 2021. Nonionic surfactants based hydrophobic deep eutectic solvents for liquid–liquid microextraction of Sudan dyes in tomato chili sauces. Food Chemistry 364:130373. doi:10.1016/j.foodchem.2021.130373.
  • Dalmaz, A, and S. S. Ozak. 2022. Development of clinoptilolite zeolite-coated magnetic nanocomposite-based solid phase microextraction method for the determination of Rhodamine B in cosmetic products. Journal of Chromatography. A 1680:463433. doi:10.1016/j.chroma.2022.463433.
  • da Silva Cunha, F. A., M. J. de Oliveira, P. P. Florez-Rodriguez, and J. C. C. Santos. 2022. Mercury speciation in estuarine water using dithiol-based magnetic solid-phase extraction and cold vapor atomic fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 192:106412. doi:10.1016/j.sab.2022.106412.
  • da Silva, D. L. F., M. A. P. da Costa, L. O. B. Silva, and W. N. L. Dos Santos. 2019. Simultaneous determination of mercury and selenium in fish by CVG AFS. Food Chemistry 273:24–30. doi:10.1016/j.foodchem.2018.05.020.
  • Deshpande, K., R. K. Mishra, and S. Bhand. 2010. A high sensitivity micro format chemiluminescence enzyme inhibition assay for determination of Hg(II). Sensors (Basel, Switzerland) 10 (7):6377–94. doi:10.3390/s100706377.
  • Dogan, H. H., O. Oztur, S. Aktas, and M. A. Sanda. 2022. The element contents in some Wild Russula Taxa from Forests of South-Marmara (Turkey). Fresenius Environmental Bulletin 31:5528–35.
  • Duran, C., V. N. Bulut, D. Ozdes, A. Gundogdu, and M. Soylak. 2009. A novel method for speciation of chromium: coprecipitation without carrier element by using a triazole derivative. Journal of AOAC International 92 (1):257–62. doi:10.1093/jaoac/92.1.257.
  • Ehrlich, H, and D. Newman. 2008. Geomicrobiology of mercury. In Geomicrobiology, 5th ed., 265–78. Boca Raton, FL: CRC Press.
  • Faraji, M. 2019. Determination of some red dyes in food samples using a hydrophobic deep eutectic solvent-based vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. Journal of Chromatography, A 1591:15–23. doi:10.1016/j.chroma.2019.01.022.
  • Gao, Z, and X. Ma. 2011. Speciation analysis of mercury in water samples using dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. Analytica Chimica Acta 702 (1):50–5.
  • Gouda, A. A., A. M. Alshehri, R. E. Sheikh, W. S. Hassan, and S. H. Ibrahim. 2020. Development of green vortex-assisted supramolecular solvent-based liquid–liquid microextraction for preconcentration of mercury in environmental and biological samples prior to spectrophotometric determination. Microchemical Journal 157:105108. doi:10.1016/j.microc.2020.105108.
  • Habila, M., E. Yilmaz, Z. A. Al Othman, and M. Soylak. 2017. 1-Nitroso-2-naphthol impregnated multiwalled carbon nanotubes (NNMWCNTs) for the separation-enrichment and flame atomic absorption spectrometric detection of copper and lead in hair, water and food samples. Desalination and Water Treatment 87:285–91. doi:10.5004/dwt.2017.21296.
  • Holmes, P., K. James, and L. Levy. 2009. Is low-level environmental mercury exposure of concern to human health? The Science of the Total Environment 408 (2):171–82.
  • Jeoung, M.-S, and H.-S. Choi. 2004. Spectrophotometric determination of trace Hg (II) in cetyltrimethylammonium bromide media. Bulletin of the Korean Chemical Society 25 (12):1877–80.
  • Ebrar Karlidağ, N., M. Toprak, R. Demirel, B. Tuğba Zaman, and S. Bakirdere. 2022. Development of copper nanoflowers based dispersive solid-phase extraction method for cadmium determination in shalgam juice samples using slotted quartz tube atomic absorption spectrometry. Food Chemistry 396:133669. doi:10.1016/j.foodchem.2022.133669.
  • Khan, M, and M. Soylak. 2016. Switchable solvent based liquid phase microextraction of mercury from environmental samples: a green aspect. RSC Advances 6 (30):24968–75. doi:10.1039/C5RA25384E.
  • Khan, M., E. Yilmaz, and M. Soylak. 2017. Supramolecular solvent microextraction of uranium at trace levels from water and soil samples. Turkish Journal of CHEMISTRY 41 (1):61–9. doi:10.3906/kim-1603-126.
  • Kumari, S., R. Jamwal, N. Mishra, and D. K. Singh. 2020. Recent developments in environmental mercury bioremediation and its toxicity: a review. Environmental Nanotechnology, Monitoring & Management 13 (100283):100283. doi:10.1016/j.enmm.2020.100283.
  • Li, P., B. Du, H. M. Chan, X. Feng, and B. Li. 2018. Mercury bioaccumulation and its toxic effects in rats fed with methylmercury polluted rice. The Science of the Total Environment 633:93–9. doi:10.1016/j.scitotenv.2018.03.185.
  • Lorenc, W., A. Hanć, A. Sajnóg, and D. Barałkiewicz. 2022. LC/ICP‐MS and complementary techniques in bespoke and nontargeted speciation analysis of elements in food samples. Mass Spectrometry Reviews 41 (1):32–50. doi:10.1002/mas.21662.
  • Morni, A, and S. M. Mostafavi. 2020. Cloud point-dispersive liquid-liquid microextraction for preconcentration and determination of mercury in wastewater samples by methylsulfanyl thiophenol material. Analytical Methods in Environmental Chemistry Journal 3 (01):63–71. doi:10.24200/amecj.v3.i01.97.
  • Narin, I, and M. Soylak. 2003. The uses of 1-(2-Pyridylazo) 2-Naphtol (PAN) impregnated ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry. Talanta 60 (1):215–21. doi:10.1016/S0039-9140(03)00039-0.
  • Noor, A. a M., P. Rameshkumar, N. M. Huang, and L. S. Wei. 2016. Visual and spectrophotometric determination of mercury (II) using silver nanoparticles modified with graphene oxide. Microchimica Acta 183 (2):597–603. doi:10.1007/s00604-015-1680-8.
  • Omar, K. A, and R. Sadeghi. 2021. Novel nonanol-based deep eutectic solvents: thermophysical properties and their applications in liquid-liquid extraction and amino acid detection. Journal of Molecular Liquids 336:116359. doi:10.1016/j.molliq.2021.116359.
  • Panggabean, A. S., S. P. Pasaribu, and F. Kristiana. 2018. The utilization of nitrogen gas as a carrier gas in the determination of hg ions using cold vapor-atomic absorption spectrophotometer (CV-AAS). Indonesian Journal of Chemistry 18 (2):279–85. doi:10.22146/ijc.23092.
  • Panichlertumpi, B, and S. Chanthai. 2013. Ultra-trace determination of Hg (II) in drinking water and local Thai liquors using homogeneous liquid–liquid extraction followed by fluorescence quenching of its ternary complex. Analytical Methods 5 (4):987–97. doi:10.1039/C2AY25834J.
  • Ragheb, E., M. Shamsipur, F. Jalali, M. Sadeghi, N. Babajani, and N. Mafakheri. 2021. Magnetic solid-phase extraction using metal–organic framework-based biosorbent followed by ligandless deep-eutectic solvent-ultrasounds-assisted dispersive liquid–liquid microextraction (DES-USA-DLLME) for preconcentration of mercury (II). Microchemical Journal 166:106209. doi:10.1016/j.microc.2021.106209.
  • Rezaei, F., Y. Yamini, M. Moradi, and B. Daraei. 2013. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Analytica Chimica Acta 804:135–42. doi:10.1016/j.aca.2013.10.026.
  • Rice, K. M., E. M. Walker, Jr, M. Wu, C. Gillette, and E. R. Blough. 2014. Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health = Yebang Uihakhoe Chi 47 (2):74–83. doi:10.3961/jpmph.2014.47.2.74.
  • Romanovskiy, K. A., M. A. Bolshov, A. V. Münz, Z. A. Temerdashev, M. Y. Burylin, and K. A. Sirota. 2018. A novel photochemical vapor generator for ICP-MS determination of As, Bi, Hg, Sb, Se and Te. Talanta 187:370–8. doi:10.1016/j.talanta.2018.05.052.
  • Rykowska, I., J. Ziemblińska, and I. Nowak. 2018. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. Journal of Molecular Liquids 259:319–39. doi:10.1016/j.molliq.2018.03.043.
  • Saadatzadeh, A., S. Afzalan, R. Zadehdabagh, L. Tishezan, N. Najafi, M. Seyedtabib, and S. M. A. Noori. 2019. Determination of heavy metals (lead, cadmium, arsenic, and mercury) in authorized and unauthorized cosmetics. Cutaneous and Ocular Toxicology 38 (3):207–11. doi:10.1080/15569527.2019.1590389.
  • Shah, S., F. Uzcan, and M. Soylak. 2022. Ultrasound-assisted deep eutectic solvent microextraction procedure for traces Ponceau 4R in water and cosmetic samples. International Journal of Environmental Science and Technology 19 (1):189–96. doi:10.1007/s13762-021-03154-z.
  • Sorouraddin, S. M., M. A. Farajzadeh, R. Pinou, and T. Okhravi. 2022. Development of a reversed-phase dispersive liquid–liquid microextraction method for the extraction and preconcentration of lead and cadmium ions in some cosmetic products. Chemical Papers 76 (4):2085–92. doi:10.1007/s11696-021-01954-8.
  • Sotolongo, A. C., E. M. Martinis, and R. G. Wuilloud. 2018. An easily prepared graphene oxide–ionic liquid hybrid nanomaterial for micro-solid phase extraction and preconcentration of Hg in water samples. Analytical Methods 10 (3):338–46. doi:10.1039/C7AY02201H.
  • Soylak, M, and F. Uzcan. 2020. A novel ultrasonication-assisted deep eutectic solvent microextraction procedure for tartrazine at trace levels from environmental samples. Journal of the Iranian Chemical Society 17 (2):461–7. doi:10.1007/s13738-019-01781-5.
  • Soylak, M., L. Elci, and M. Doğan. 1993. Determination of some trace metals in dialysis solutions by atomic absorption spectrometry after preconcentration. Analytical Letters 26 (9):1997–2007. doi:10.1080/00032719308017446.
  • Soylak, M., U. Divrikli, L. Elci, and M. Dogan. 2002. Preconcentration of Cr(III), Co(II), Cu(II), Fe(III) and Pb(II) as calmagite chelates on cellulose nitrate membrane filter prior to their flame atomic absorption spectrometric determinations. Talanta 56 (3):565–70. doi:10.1016/S0039-9140(01)00575-6.
  • Spiller, H. A. 2018. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clinical Toxicology (Philadelphia, Pa.) 56 (5):313–26. doi:10.1080/15563650.2017.1400555.
  • Taco, V., P. Savarino, S. Benali, E. Villacrés, J.-M. Raquez, P. Gerbaux, P. Duez, and A. Nachtergael. 2022. Deep eutectic solvents for the extraction and stabilization of Ecuadorian quinoa (Chenopodium quinoa Willd.) saponins. Journal of Cleaner Production 363:132609. doi:10.1016/j.jclepro.2022.132609.
  • Torbati, M., M. A. Farajzadeh, M. R. A. Mogaddam, and M. Torbati. 2019. Deep eutectic solvent based homogeneous liquid–liquid extraction coupled with in‐syringe dispersive liquid–liquid microextraction performed in narrow tube; application in extraction and preconcentration of some herbicides from tea. Journal of Separation Science 42 (9):1768–76. doi:10.1002/jssc.201801016.
  • Tuzen, M, and M. Soylak. 2005. Mercury contamination in mushroom samples from Tokat, Turkey. Bulletin of Environmental Contamination and Toxicology 74 (5):968–72. doi:10.1007/s00128-005-0674-3.
  • Tuzen, M., O. D. Uluozlu, I. Karaman, and M. Soylak. 2009. Mercury (II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2. Journal of Hazardous Materials 169 (1-3):345–50. doi:10.1016/j.jhazmat.2009.03.100.
  • Valasques, G. S., A. M. P. Dos Santos, D. L. F. da Silva, U. M. F. da Mata Cerqueira, S. L. C. Ferreira, W. N. L. Dos Santos, and M. A. Bezerra. 2020. Extraction induced by emulsion breaking for As, Se and Hg determination in crude palm oil by vapor generation-AFS. Food Chemistry 318:126473.
  • Yang, L., Y. Zhang, F. Wang, Z. Luo, S. Guo, and U. Strähle. 2020. Toxicity of mercury: molecular evidence. Chemosphere 245:125586. doi:10.1016/j.chemosphere.2019.125586.
  • Yilmaz, E, and M. Soylak. 2016. Latest trends, green aspects, and innovations in liquid-phase–based microextraction techniques: a review. Turkish Journal of CHEMISTRY 40 (6):868–93. doi:10.3906/kim-1605-26.
  • Yin, C., J. Iqbal, H. Hu, B. Liu, L. Zhang, B. Zhu, and Y. Du. 2012. Sensitive determination of trace mercury by UV–visible diffuse reflectance spectroscopy after complexation and membrane filtration-enrichment. Journal of Hazardous Materials 233-234:207–12. doi:10.1016/j.jhazmat.2012.07.016.
  • Zengin, H. B, and R. Gürkan. 2022. pH-controlled charge transfer sensitive 2-aminobenzimidazole modified poly(styrene-co-maleic anhydride) copolymer for selective extraction, pre-concentration and determination of trace Hg2+ and CH3Hg+ in vinegar by combination of ultrasound assisted-cloud point extraction with UV-VIS spectrophotometry. Journal of Food Composition and Analysis 114:104729. doi:10.1016/j.jfca.2022.104729.
  • Zhai, Y., S. E. Duan, Q. He, X. Yang, and Q. Han. 2010. Solid phase extraction and preconcentration of trace mercury (II) from aqueous solution using magnetic nanoparticles doped with 1, 5-diphenylcarbazide. Microchimica Acta 169 (3-4):353–60. doi:10.1007/s00604-010-0363-8.
  • Zhang, S., B. Chen, M. He, and B. Hu. 2018. Switchable solvent based liquid phase microextraction of trace lead and cadmium from environmental and biological samples prior to graphite furnace atomic absorption spectrometry detection. Microchemical Journal 139:380–5. doi:10.1016/j.microc.2018.03.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.